Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38565292

ABSTRACT

Glucagon-like peptide-1 (GLP-1) and its analogs are widely used for diabetes treatment. The paraventricular nucleus (PVN) is crucial for regulating cardiovascular activity. This study aims to determine the roles of GLP-1 and its receptors (GLP-1R) in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male normotensive rats and spontaneously hypertensive rats (SHR). Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were recorded. GLP-1 and GLP-1R expressions were present in the PVN. PVN microinjection of GLP-1R agonist recombinant human GLP-1 (rhGLP-1) or EX-4 increased RSNA and MAP, which were prevented by GLP-1R antagonist exendin 9-39 (EX9-39) or GLP-1R antagonist 1, superoxide scavenger tempol, antioxidant N-acetylcysteine, NADPH oxidase (NOX) inhibitor apocynin, adenylyl cyclase (AC) inhibitor SQ22536 or protein kinase A (PKA) inhibitor H89. PVN microinjection of rhGLP-1 increased superoxide production, NADPH oxidase activity, cAMP level, AC, and PKA activity, which were prevented by SQ22536 or H89. GLP-1 and GLP-1R were upregulated in the PVN of SHR. PVN microinjection of GLP-1 agonist increased RSNA and MAP in both WKY and SHR, but GLP-1 antagonists caused greater effects in reducing RSNA and MAP in SHR than in WKY. The increased superoxide production and NADPH oxidase activity in the PVN of SHR were augmented by GLP-1R agonists but attenuated by GLP-1R antagonists. These results indicate that activation of GLP-1R in the PVN increased sympathetic outflow and blood pressure via cAMP-PKA-mediated NADPH oxidase activation and subsequent superoxide production. GLP-1 and GLP-1R upregulation in the PVN partially contributes to sympathetic overactivity and hypertension.


Subject(s)
Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor , Hypertension , Paraventricular Hypothalamic Nucleus , Rats, Inbred SHR , Sympathetic Nervous System , Animals , Paraventricular Hypothalamic Nucleus/drug effects , Paraventricular Hypothalamic Nucleus/metabolism , Male , Hypertension/physiopathology , Hypertension/metabolism , Rats , Sympathetic Nervous System/drug effects , Sympathetic Nervous System/physiology , Glucagon-Like Peptide 1/metabolism , Glucagon-Like Peptide-1 Receptor/metabolism , Glucagon-Like Peptide-1 Receptor/antagonists & inhibitors , Blood Pressure/drug effects , Blood Pressure/physiology , Rats, Inbred WKY , Rats, Sprague-Dawley
2.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36552603

ABSTRACT

Sympathetic overactivity contributes to the pathogenesis of sepsis. The selective α2-adrenergic receptor agonist dexmedetomidine (DEX) is widely used for perioperative sedation and analgesia. We aimed to determine the central roles and mechanisms of DEX in attenuating sympathetic activity and inflammation in sepsis. Sepsis was induced by a single intraperitoneal injection of lipopolysaccharide (LPS) in rats. Effects of DEX were investigated 24 h after injection of LPS. Bilateral microinjection of DEX in the paraventricular nucleus (PVN) attenuated LPS-induced sympathetic overactivity, which was attenuated by the superoxide dismutase inhibitor DETC, cAMP analog db-cAMP or GABAA receptor antagonist gabazine. Superoxide scavenger tempol, NADPH oxidase inhibitor apocynin, adenylate cyclase inhibitor SQ22536 or PKA inhibitor Rp-cAMP caused similar effects to DEX in attenuating LPS-induced sympathetic activation. DEX inhibited LPS-induced superoxide and cAMP production, as well as NADPH oxidase, adenylate cyclase and PKA activation. The roles of DEX in reducing superoxide production and NADPH oxidase activation were attenuated by db-cAMP or gabazine. Intravenous infusion of DEX inhibited LPS-induced sympathetic overactivity, NOX activation, superoxide production, TNF-α and IL-1ß upregulation in the PVN and plasma, as well as lung and renal injury, which were attenuated by the PVN microinjection of yohimbine and DETC. We conclude that activation of α2-adrenergic receptors with DEX in the PVN attenuated LPS-induced sympathetic overactivity by reducing NADPH oxidase-dependent superoxide production via both inhibiting adenylate cyclase-cAMP-PKA signaling and activating GABAA receptors. The inhibition of NADPH oxidase-dependent superoxide production in the PVN partially contributes to the roles of intravenous infusion of DEX in attenuating LPS-induced sympathetic activation, oxidative stress and inflammation.

3.
Eur J Pharmacol ; 936: 175343, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36306926

ABSTRACT

Chemerin is an adipokine involved in regulating energy homeostasis and reproductive function. Excessive sympathetic activity contributes to hypertension, chronic heart failure and chronic renal disease. Hypothalamic paraventricular nucleus (PVN) is crucial in regulating sympathetic activity and blood pressure. The present study is designed to investigate the roles of chemerin in the PVN in regulating sympathetic activity and blood pressure and underlying mechanisms. Microinjections were performed in the bilateral PVN in male adult rats under anesthesia. Renal sympathetic nerve activity (RSNA) and mean arterial pressure (MAP) were continuously recorded. The PVN microinjection of chemerin-9, an active fragment of chemerin, increased RSNA and MAP, which were abolished by chemokine-like receptor 1 (CMKLR1) antagonist α-NETA, a superoxide scavenger tempol, antioxidant N-acetylcysteine (NAC), NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI) and apocynin. Immunofluorescence analyses showed that N-methyl-D-aspartate (NMDA) receptors existed in most of cells of the PVN, and some of them co-existed with chemerin. The effects of chemerin-9 on RSNA and MAP were prevented by glutamate-binding site antagonist L-phenylalanine, NMDA receptor antagonist MK-801, and calcium channel blocker verapamil or nifedipine, but only attenuated by non-NMDA receptor antagonist CNQX. Moreover, chemerin-9 increased NADPH oxidase activity and superoxide production, which were prevented by α-NETA, MK-801, or verapamil. These results indicate that chemerin-9 in the PVN increases sympathetic activity and blood pressure via CMKLR1-dependent calcium influx, and glutamate receptor-mediated NADPH oxidase activation and subsequent superoxide production.


Subject(s)
Paraventricular Hypothalamic Nucleus , Superoxides , Animals , Male , Rats , Blood Pressure , Dizocilpine Maleate/pharmacology , NADPH Oxidases/metabolism , Rats, Sprague-Dawley , Reactive Oxygen Species , Receptors, Chemokine , Receptors, Glutamate , Sympathetic Nervous System , Verapamil/pharmacology
4.
Int J Mol Sci ; 23(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36293450

ABSTRACT

Asprosin is a newly discovered adipokine that is involved in regulating metabolism. Sympathetic overactivity contributes to the pathogenesis of several cardiovascular diseases. The paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the regulation of sympathetic outflow and blood pressure. This study was designed to determine the roles and underlying mechanisms of asprosin in the PVN in regulating sympathetic outflow and blood pressure. Experiments were carried out in male adult SD rats under anesthesia. Renal sympathetic nerve activity (RSNA), mean arterial pressure (MAP), and heart rate (HR) were recorded, and PVN microinjections were performed bilaterally. Asprosin mRNA and protein expressions were high in the PVN. The high asprosin expression in the PVN was involved in both the parvocellular and magnocellular regions according to immunohistochemical analysis. Microinjection of asprosin into the PVN produced dose-related increases in RSNA, MAP, and HR, which were abolished by superoxide scavenger tempol, antioxidant N-acetylcysteine (NAC), and NADPH oxidase inhibitor apocynin. The asprosin promoted superoxide production and increased NADPH oxidase activity in the PVN. Furthermore, it increased the cAMP level, adenylyl cyclase (AC) activity, and protein kinase A (PKA) activity in the PVN. The roles of asprosin in increasing RSNA, MAP, and HR were prevented by pretreatment with AC inhibitor SQ22536 or PKA inhibitor H89 in the PVN. Microinjection of cAMP analog db-cAMP into the PVN played similar roles with asprosin in increasing the RSNA, MAP, and HR, but failed to further augment the effects of asprosin. Pretreatment with PVN microinjection of SQ22536 or H89 abolished the roles of asprosin in increasing superoxide production and NADPH oxidase activity in the PVN. These results indicated that asprosin in the PVN increased the sympathetic outflow, blood pressure, and heart rate via cAMP-PKA signaling-mediated NADPH oxidase activation and the subsequent superoxide production.


Subject(s)
Paraventricular Hypothalamic Nucleus , Superoxides , Male , Rats , Animals , Paraventricular Hypothalamic Nucleus/metabolism , Reactive Oxygen Species/metabolism , Superoxides/metabolism , Adenylyl Cyclases/metabolism , Antioxidants/pharmacology , Acetylcysteine/pharmacology , Rats, Sprague-Dawley , Sympathetic Nervous System , Blood Pressure , NADPH Oxidases/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Adipokines/metabolism , RNA, Messenger/metabolism
5.
Antioxidants (Basel) ; 11(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35624870

ABSTRACT

Oxidative stress and sustained sympathetic over-activity contribute to the pathogenesis of hypertension. Catheter-based renal denervation has been used as a strategy for treatment of resistant hypertension, which interrupts both afferent and efferent renal fibers. However, it is unknown whether selective renal afferent denervation (RAD) may play beneficial roles in attenuating oxidative stress and sympathetic activity in hypertension. This study investigated the impact of selective RAD on hypertension and vascular remodeling. Nine-week-old normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were subjected to selective renal afferent denervation (RAD) with 33 mM of capsaicin for 15 min. Treatment with the vehicle of capsaicin was used as a control. The selective denervation was confirmed by the reduced calcitonin gene-related peptide expression and the undamaged renal sympathetic nerve activity response to the stimulation of adipose white tissue. Selective RAD reduced plasma norepinephrine levels, improved heart rate variability (HRV) and attenuated hypertension in SHR.It reduced NADPH oxidase (NOX) expression and activity, and superoxide production in the hypothalamic paraventricular nucleus (PVN), aorta and mesenteric artery of SHR. Moreover, the selective RAD attenuated the vascular remodeling of the aorta and mesenteric artery of SHR. These results indicate that selective removal of renal afferents attenuates sympathetic activity, oxidative stress, vascular remodeling and hypertension in SHR. The attenuated superoxide signaling in the PVN is involved in the attenuation of sympathetic activity in SHR, and the reduced sympathetic activity at least partially contributes to the attenuation of vascular oxidative stress and remodeling in the arteries of hypertensive rats.

6.
Front Physiol ; 12: 673950, 2021.
Article in English | MEDLINE | ID: mdl-34149454

ABSTRACT

Excessive sympathetic activation plays crucial roles in the pathogenesis of hypertension. Chemical stimulation of renal afferents increases the sympathetic activity and blood pressure in normal rats. This study investigated the excitatory renal reflex (ERR) in the development of hypertension in the spontaneously hypertensive rat (SHR). Experiments were performed in the Wistar-Kyoto rat (WKY) and SHR aged at 4, 12, and 24 weeks under anesthesia. Renal infusion of capsaicin was used to stimulate renal afferents, and thus, to induce ERR. The ERR was evaluated by the changes in the contralateral renal sympathetic nerve activity and mean arterial pressure. At the age of 4 weeks, the early stage with a slight or moderate hypertension, the ERR was more enhanced in SHR compared with WKY. The pressor response was greater than the sympathetic activation response in the SHR. At the age of 12 weeks, the development stage with severe hypertension, there was no significant difference in the ERR between the WKY and SHR. At the age of 24 weeks, the later stage of hypertension with long-term several hypertensions, the ERR was more attenuated in the SHR compared with the WKY. On the other hand, the pressor response to sympathetic activation due to the ERR was smaller at the age of 12 and 24 weeks than those at the age of 4 weeks. These results indicate that ERR is enhanced in the early stage of hypertension, and attenuated in the later stage of hypertension in the SHR. Abnormal ERR is involved in the sympathetic activation and the development of hypertension.

7.
Comput Methods Programs Biomed ; 104(3): 472-9, 2011 Dec.
Article in English | MEDLINE | ID: mdl-20880603

ABSTRACT

This paper presents an intuitive nose surgery planning and simulation system, using 3D laser scan image and lateral X-ray image, to provide high quality prediction of the postoperative appearance, and design the patient specific prosthesis model automatically. After initial registration, the internal surface of soft tissue at the nose region was generated by the statistical data for soft tissue thickness adapted by the individual thickness information from the X-ray image. Then, the sketch contour of the 3D scan data on the lateral X-ray image was modified manually or adjusted automatically according to some aesthetic statistical data, to drive the simulation in real time by the state-of-the-art Laplacian surface deformation method. When satisfied with the 3D postoperative appearance, the deformation was mapped to the internal surface of soft tissue, and the change before and after simulation was utilized to generate the patient specific prosthesis model automatically. The surgeons who used the system confirmed that this planning system is attractive and has potential for daily clinical practice.


Subject(s)
Automation , Nose/surgery , Prostheses and Implants , Humans , Imaging, Three-Dimensional
8.
Chin J Traumatol ; 10(2): 116-9, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17371623

ABSTRACT

OBJECTIVE: To discuss the application of MRI in indirect temporomandibular joint injury without condylar fracture. METHODS: MRI examination on temporomandibular joint was conducted in 28 patients with indirect injury to temporomandibular joint without condylar fracture. The scanning sequence included T(1)WI, PDWI on oblique sagittal section at both open and closed mouth positions, and T(1)WI, T(2)WI on oblique coronal section. The MRI appearance was analyzed by 2 senior radiologists. RESULTS: Among the 56 temporomandibular joints of 28 patients, 35 joints exhibited pathological changes on MRI, in which there were 9 bone injuries, 21 articular disc dislocation, 24 intracapsular hematocele and hydrops. CONCLUSIONS: MRI can clearly reveal bone injury, articular disc dislocation as well as articular capsule abnormality in the indirect injury of temporomandibular joint without condylar fracture. It is highly advocated in clinical use.


Subject(s)
Magnetic Resonance Imaging , Maxillofacial Injuries/diagnosis , Temporomandibular Joint/injuries , Adolescent , Adult , Aged , Child , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...