Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 262
Filter
1.
Int J Med Sci ; 21(9): 1769-1782, 2024.
Article in English | MEDLINE | ID: mdl-39006834

ABSTRACT

Dilated cardiomyopathy (DCM) causes heart failure and sudden death. Epigenetics is crucial in cardiomyopathy susceptibility and progression; however, the relationship between epigenetics, particularly DNA methylation, and DCM remains unknown. Therefore, this study identified aberrantly methylated differentially expressed genes (DEGs) associated with DCM using bioinformatics analysis and characterized their clinical utility in DCM. DNA methylation expression profiles and transcriptome data from public datasets of human DCM and healthy control cardiac tissues were obtained from the Gene Expression Omnibus public datasets. Then an epigenome-wide association study was performed. DEGs were identified in both DCM and healthy control cardiac tissues. In total, 3,353 cytosine-guanine dinucleotide sites annotated to 2,818 mRNAs were identified, and 479 DCM-related genes were identified. Subsequently, core genes were screened using logistic, least absolute shrinkage and selection operator, random forest, and support vector machine analyses. The overlapping of these genes resulted in DEGs with abnormal methylation patterns. Cross-tabulation analysis identified 8 DEGs with abnormal methylation. Real-time quantitative polymerase chain reaction confirmed the expression of aberrantly methylated DEGs in mice. In DCM murine cardiac tissues, the expressions of SLC16A9, SNCA, PDE5A, FNDC1, and HTRA1 were higher compared to normal murine cardiac tissues. Moreover, logistic regression model associated with aberrantly methylated DEGs was developed to evaluate the diagnostic value, and the area under the receiver operating characteristic curve was 0.949, indicating that the diagnostic model could reliably distinguish DCM from non-DCM samples. In summary, our study identified 5 DEGs through integrated bioinformatic analysis and in vivo experiments, which could serve as potential targets for further comprehensive investigation.


Subject(s)
Cardiomyopathy, Dilated , Computational Biology , DNA Methylation , Gene Expression Profiling , Cardiomyopathy, Dilated/genetics , DNA Methylation/genetics , Humans , Animals , Mice , Epigenesis, Genetic , Transcriptome/genetics , Male , Gene Expression Regulation/genetics
2.
Biotechnol Bioeng ; 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38973176

ABSTRACT

Biosensors are valuable tools in accelerating the test phase of the design-build-test-learn cycle of cell factory development, as well as in bioprocess monitoring and control. G protein-coupled receptor (GPCR)-based biosensors enable cells to sense a wide array of molecules and environmental conditions in a specific manner. Due to the extracellular nature of their sensing, GPCR-based biosensors require compartmentalization of distinct genotypes when screening production levels of a strain library to ensure that detected levels originate exclusively from the strain under assessment. Here, we explore the integration of production and sensing modalities into a single Saccharomyces cerevisiae strain and compartmentalization using three different methods: (1) cultivation in microtiter plates, (2) spatial separation on agar plates, and (3) encapsulation in water-in-oil-in-water double emulsion droplets, combined with analysis and sorting via a fluorescence-activated cell sorting machine. Employing tryptamine and serotonin as proof-of-concept target molecules, we optimize biosensing conditions and demonstrate the ability of the autocrine screening method to enrich for high producers, showing the enrichment of a serotonin-producing strain over a nonproducing strain. These findings illustrate a workflow that can be adapted to screening for a wide range of complex chemistry at high throughput using commercially available microfluidic systems.

3.
Adv Sci (Weinh) ; : e2402888, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923874

ABSTRACT

Nano-delivery systems hold great promise for the treatment of rheumatoid arthritis (RA). Current research efforts are primarily focused on enhancing their targeting capabilities and efficacy. Here, this study proposes a novel viral-mimicking ternary polyplexes system for the controlled delivery of the anti-inflammatory drug Cyclosporin A (CsA) to effectively treat RA. The ternary polyplexes consist of a nanogel core loaded with CsA and a hyaluronic acid shell, which facilitates CD44-mediated targeting. By mimicking the Trojan Horse strategy employed by viruses, these polyplexes undergo a stepwise process of deshielding and disintegration within the inflamed joints. This process leads to the release of CsA within the cells and the scavenging of pathogenic factors. This study demonstrates that these viral-mimicking ternary polyplexes exhibit rapid targeting, high accumulation, and prolonged persistence in the joints of RA mice. As a result, they effectively reduce inflammation and alleviate symptoms. These results highlight the potential of viral-mimicking ternary polyplexes as a promising therapeutic approach for the targeted and programmed delivery of drugs to treat not only RA but also other autoimmune diseases.

4.
Pathogens ; 13(6)2024 May 27.
Article in English | MEDLINE | ID: mdl-38921752

ABSTRACT

Clostridium perfringens alpha toxin (CPA), which causes yellow lamb disease in sheep and gas gangrene and food poisoning in humans, is produced by all types of C. perfringens and is the major virulence determinant of C. perfringens type A. CPA induces hemolysis in many species, including humans, murines, sheep and rabbits, through its enzymatic activity, which dissolves the cell membrane. Recent studies have shown that some pore-forming toxins cause hemolysis, which is achieved by the activation of purinergic receptors (P2). However, the relationship between P2 receptors and non-pore-forming toxin hemolysis has not been investigated. In the present study, we examined the function of P2 receptors in CPA toxin hemolysis and found that CPA-induced hemolysis was dependent on P2 receptor activation, and this was also true for Staphylococcus aureus ß-Hemolysin, another non-pore-forming toxin. Furthermore, we use selective P2 receptor antagonists to demonstrate that P2X1 and P2X7 play important roles in the hemolysis of human and murine erythrocytes. In addition, we found that redox metabolism was mainly involved in CPA-induced hemolysis using metabolomic analysis. We further demonstrate that CPA activates P2 receptors and then activates NADPH oxidase through the PI3K/Akt and MEK1/ERK1 pathways, followed by the production of active oxygen to induce hemolysis. These findings contribute to our understanding of the pathological effects of CPA, clarify the relationship between P2 activation and non-pore-forming toxin-induced hemolysis, and provide new insights into CPA-induced hemolysis.

5.
ACS Nano ; 18(27): 17378-17406, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38916747

ABSTRACT

Liver diseases have consistently posed substantial challenges to global health. It is crucial to find innovative methods to effectively prevent and treat these diseases. In recent times, there has been an increasing interest in the use of mRNA formulations that accumulate in liver tissue for the treatment of hepatic diseases. In this review, we start by providing a detailed introduction to the mRNA technology. Afterward, we highlight types of liver diseases, discussing their causes, risks, and common therapeutic strategies. Additionally, we summarize the latest advancements in mRNA technology for the treatment of liver diseases. This includes systems based on hepatocyte growth factor, hepatitis B virus antibody, left-right determination factor 1, human hepatocyte nuclear factor α, interleukin-12, methylmalonyl-coenzyme A mutase, etc. Lastly, we provide an outlook on the potential of mRNA technology for the treatment of liver diseases, while also highlighting the various technical challenges that need to be addressed. Despite these difficulties, mRNA-based therapeutic strategies may change traditional treatment methods, bringing hope to patients with liver diseases.


Subject(s)
Liver Diseases , RNA, Messenger , Humans , RNA, Messenger/genetics , Liver Diseases/therapy , Liver Diseases/genetics , Animals , Genetic Therapy/methods
6.
Carbohydr Polym ; 339: 122256, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823922

ABSTRACT

Recently, the intestinal lymphatic transport based on Peyer's patches (PPs) is emerging as a promising absorption pathway for natural polysaccharides. Herein, the aim of this study is to investigate the PP-based oral absorption of a pectic polysaccharide from Smilax china L. (SCLP), as well as its uptake and transport mechanisms in related immune cells. Taking advantages of the traceability of fluorescently labeled SCLP, we confirmed that SCLP could be absorbed into PPs and captured by their mononuclear phagocytes (dendritic cells and macrophages) following oral administration. Subsequently, the systematic in vitro study suggested that the endocytic mechanisms of SCLP by model mononuclear phagocytes (BMDCs and RAW264.7 cells) mainly involved caveolae-mediated endocytosis, macropinocytosis and phagocytosis. More importantly, SCLP directly binds and interacts with toll-like receptor 2 (TLR2) and galectin 3 (Gal-3) receptor, and was taken up by mononuclear phagocytes in receptor-mediated manner. After internalization, SCLP was intracellularly transported primarily through endolysosomal pathway and ultimately localized in lysosomes. In summary, this work reveals novel information and perspectives about the in vivo fate of SCLP, which will contribute to further research and utilization of SCLP and other pectic polysaccharides.


Subject(s)
Peyer's Patches , Smilax , Animals , Mice , RAW 264.7 Cells , Peyer's Patches/metabolism , Smilax/chemistry , Endocytosis , Pectins/chemistry , Pectins/metabolism , Macrophages/metabolism , Macrophages/drug effects , Phagocytosis/drug effects , Phagocytes/metabolism , Phagocytes/drug effects , Toll-Like Receptor 2/metabolism , Mice, Inbred BALB C , Male , Dendritic Cells/metabolism , Dendritic Cells/drug effects , Administration, Oral
7.
Sheng Wu Gong Cheng Xue Bao ; 40(5): 1323-1337, 2024 May 25.
Article in Chinese | MEDLINE | ID: mdl-38783800

ABSTRACT

Nanotechnology has attracted increasing attention in the field of medical applications due to its significant potential for development. However, one major challenge that has emerged with nanoparticles is their tendency to activate the host immune clearance system, which hampers the achievement of desired therapeutic outcomes and may lead to harmful side effects. In recent years, membrane-coated nanoparticles have emerged as a promising solution, demonstrating their effectiveness in evading immune system clearance. These innovative nanoparticles inherit essential biological attributes from natural cell membranes, such as anchoring proteins and antigens. Consequently, membrane-coated nanoparticles exhibit unique capabilities such as immune evasion, prolonged circulation, targeted drug release, and immune modulation, substantially enhancing their versatility and prospects within the realm of biomedical applications. This review provides a comprehensive overview of the current applications of cell membrane-coated nanoparticles in disease therapy, highlighting their immense potential in this rapidly evolving platform. Additionally, the review outlines the promising prospects of this technology in disease therapy.


Subject(s)
Cell Membrane , Nanoparticles , Nanoparticles/chemistry , Humans , Cell Membrane/metabolism , Drug Delivery Systems , Animals , Neoplasms/therapy , Nanotechnology/methods
8.
Parasit Vectors ; 17(1): 204, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715075

ABSTRACT

BACKGROUND: Mosquito-borne viruses cause various infectious diseases in humans and animals. Oya virus (OYAV) and Ebinur Lake virus (EBIV), belonging to the genus Orthobunyavirus within the family Peribunyaviridae, are recognized as neglected viruses with the potential to pose threats to animal or public health. The evaluation of vector competence is essential for predicting the arbovirus transmission risk. METHODS: To investigate the range of mosquito vectors for OYAV (strain SZC50) and EBIV (strain Cu20-XJ), the susceptibility of four mosquito species (Culex pipiens pallens, Cx. quinquefasciatus, Aedes albopictus, and Ae. aegypti) was measured through artificial oral infection. Then, mosquito species with a high infection rate (IR) were chosen to further evaluate the dissemination rate (DR), transmission rate (TR), and transmission efficiency. The viral RNA in each mosquito sample was determined by RT-qPCR. RESULTS: The results revealed that for OYAV, Cx. pipiens pallens had the highest IR (up to 40.0%) among the four species, but the DR and TR were 4.8% and 0.0%, respectively. For EBIV, Cx. pipiens pallens and Cx. quinquefasciatus had higher IR compared to Ae. albopictus (1.7%). However, the EBIV RNA and infectious virus were detected in Cx. pipiens pallens, with a TR of up to 15.4% and a transmission efficiency of 3.3%. CONCLUSIONS: The findings indicate that Cx. pipiens pallens was susceptible to OYAV but had an extremely low risk of transmitting the virus. Culex pipiens pallens and Cx. quinquefasciatus were susceptible to EBIV, and Cx. pipiens pallens had a higher transmission risk to EBIV than Cx. quinquefasciatus.


Subject(s)
Aedes , Culex , Mosquito Vectors , Orthobunyavirus , Animals , Mosquito Vectors/virology , Aedes/virology , Culex/virology , Orthobunyavirus/genetics , Orthobunyavirus/classification , Orthobunyavirus/isolation & purification , RNA, Viral/genetics , Bunyaviridae Infections/transmission , Bunyaviridae Infections/virology
9.
J Mol Cell Biol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38692847

ABSTRACT

The rs72613567:TA polymorphism in 17-beta hydroxysteroid dehydrogenase 13 (HSD17B13) has been found to reduce the progression from steatosis to nonalcoholic steatohepatitis. In this study, we sought to define the pathogenic role of HSD17B13 in triggering liver inflammation. Here we find that HSD17B13 forms liquid-liquid phase separation (LLPS) around lipid droplets in the livers of nonalcoholic steatohepatitis patients. The dimerization of HSD17B13 supports the LLPS formation and promotes its enzymatic function. HSD17B13 LLPS increases the biosynthesis of platelet activating factor (PAF), which in turn promotes fibrinogen synthesis and leukocyte adhesion. Blockade of PAFR or STAT3 pathway inhibited the fibrinogen synthesis and leukocyte adhesion. Importantly, adeno-associated viral-mediated xeno-expression of human HSD17B13 exacerbated western diet/carbon tetrachloride-induced liver inflammation in Hsd17b13-/- mice. In conclusion, our results suggest that HSD17B13 LLPS triggers liver inflammation by promoting PAF-mediated leukocyte adhesion, and targeting HSD17B13 phase transition could be a promising therapeutic approach for treating hepatic inflammation in chronic liver disease.

10.
Article in English | MEDLINE | ID: mdl-38594624

ABSTRACT

Hydrogel microcarrier-based drug delivery systems are of great value in the combination therapy of tumors. Current research directions concentrate on the development of more economic, convenient, and effective combined therapeutic platforms. Herein, we developed novel adhesive composite microparticles (MPPMD) with combined chemo- and photothermal therapy ability via microfluidic electrospray technology for local hepatocellular carcinoma treatment. These composite microparticles consisted of doxorubicin (DOX)-loaded and polydopamine-wrapped mesoporous silicon and alginate. Benefiting from such a strategy of hierarchical structure drug loading, DOX could be gradually released from the system, effectively avoiding the direct toxicity of chemotherapeutics to the body. Additionally, the designed microparticles could not only effectively treat tumors by releasing the chemotherapy drug DOX but also show excellent photothermal properties under the irradiation of near-infrared light, achieving combined chemo- and photothermal treatment effects. Based on these advantages, the MPPMD could remarkably eliminate tumor cells in vitro and enormously restrict tumor development in vivo. These results illustrate that such composite microparticles are ideal combination treatment platforms, possessing promising expectations for cancer therapy.

11.
Science ; 384(6693): eadn9524, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38669573

ABSTRACT

The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.


Subject(s)
Aedes , Dengue Virus , Mosquito Vectors , Symbiosis , Zika Virus , Animals , Aedes/microbiology , Aedes/virology , Dengue Virus/physiology , Mosquito Vectors/virology , Mosquito Vectors/microbiology , Zika Virus/physiology , Dengue/transmission , Dengue/virology , Dengue/prevention & control , Gastrointestinal Microbiome , Acetobacteraceae/physiology , Female , Viral Envelope Proteins/metabolism , Viral Envelope Proteins/genetics , Flavivirus/physiology , Flavivirus/genetics , Zika Virus Infection/transmission , Zika Virus Infection/virology
12.
Article in English | MEDLINE | ID: mdl-38683642

ABSTRACT

Background: Kadipiro virus (KDV) is a species of the new 12 segmented RNA virus grouped under the genus Seadornavirus within the Reoviridae family. It has previously been isolated or detected from mosquito, Odonata, and bat feces in Indonesia, China, and Denmark, respectively. Here, we describe the isolation and characterization of a viral strain from mosquitoes in Yunnan Province, China. Methods: Mosquitoes were collected overnight using light traps in Shizong county, on July 17, 2023. Virus was isolated from the mosquito homogenate and grown using baby hamster kidney and Aedes albopictus (C6/36) cells. Preliminary identification of the virus was performed by agarose gel electrophoresis (AGE). The full-genome sequences of the strain were determined by full-length amplification of cDNAs and sequenced using next-generation sequencing. Results: We isolated a viral strain (SZ_M48) from mosquitoes (Culex tritaeniorhynchus Giles) that caused cytopathogenic effects in C6/36 cells. AGE analysis indicated a genome consisting of 12 segments of double-stranded RNA that demonstrated a "6-5-1" pattern, similar to the migrating bands of KDV. Phylogenetic analysis based on the full-genome sequence revealed that SZ_M48 is more clustered with KDV isolates from Hubei and Shangdong in China than with Indonesian and Danish strains. The identity between SZ_M48 and SDKL1625 (Shandong, China) is slightly lower than that of QTM27331 (Hubei, China), and the identity with JKT-7075 (Indonesia) and 21164-6/M.dau/DK (Denmark) is the lowest. Conclusion: The full-genome sequence of the new KDV strain described in this study may be useful for surveillance of the evolutionary characteristics of KDVs. Moreover, these findings extend the knowledge about the genomic diversity, potential vectors, and the distribution of KDVs in China.

13.
Carbohydr Polym ; 333: 121974, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38494227

ABSTRACT

Astragalus membranaceus polysaccharide (APS) possesses excellent immunomodulatory activity. However, there are several studies on the structural characterization of APS. Here, we aimed to elucidate the repeating units of polysaccharides (APS1, 106.5 kDa; APS2, 114.5 kDa) obtained from different Astragalus membranaceus origins and further investigated their immunomodulatory activities. Based on structural analysis, types of the two polysaccharides were identified as arabinogalactan-I (AG-I) and arabinogalactan-II (AG-II), and co-elution of arabinogalactans (AGs) and α-glucan was observed. The backbone of AG-I was 1,4-linked ß-Galp occasionally substituted by α-Araf at O-2 and/or O-3. AG-II was a highly branched polysaccharide with long branches of α-Araf, which were attached to the O-3 of 1,6-linked ß-Galp of the backbone. The presence of AGs in A. membranaceus was confirmed for the first time. The two polysaccharides could promote the expression of IL-6, IL-1ß and TNF-α in RAW264.7 cells via MAPKs and NF-κB signaling pathways. The constants for APS1 and APS2 binding to Toll-like receptor 4 (TLR4) were 1.83 × 10-5 and 2.08 × 10-6, respectively. Notably, APS2 showed better immunomodulatory activity than APS1, possibly because APS2 contained more AGs. Hence, the results suggested that AGs were the vital components of APS in the immunomodulatory effect.


Subject(s)
Astragalus propinquus , Galactans , Galactans/pharmacology , Galactans/chemistry , Polysaccharides/pharmacology , Polysaccharides/chemistry , Signal Transduction
14.
Sci Bull (Beijing) ; 69(10): 1448-1457, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38490890

ABSTRACT

Liver-tissue engineering has proven valuable in treating liver diseases, but the construction of liver tissues with high fidelity remains challenging. Here, we present a novel three-dimensional (3D)-imprinted cell-sheet strategy for the synchronous construction of biomimetic hepatic microtissues with high accuracy in terms of cell type, density, and distribution. To achieve this, the specific composition of hepatic cells in a normal human liver was determined using a spatial proteogenomics dataset. The data and biomimetic hepatic micro-tissues with hexagonal hollow cross-sections indicate that cell information was successfully generated using a homemade 3D-imprinted device for layer-by-layer imprinting and assembling the hepatic cell sheets. By infiltrating vascular endothelial cells into the hollow section of the assembly, biomimetic hepatic microtissues with vascularized channels for nutrient diffusion and drug perfusion can be obtained. We demonstrate that the resultant vascularized biomimetic hepatic micro-tissues can not only be integrated into a microfluidic drug-screening liver-on-a-chip but also assembled into an enlarged physiological structure to promote liver regeneration. We believe that our 3D-imprinted cell sheets strategy will open new avenues for biomimetic microtissue construction.


Subject(s)
Biomimetics , Hepatocytes , Liver , Tissue Engineering , Humans , Liver/cytology , Tissue Engineering/methods , Biomimetics/methods , Hepatocytes/cytology , Hepatocytes/metabolism , Liver Regeneration , Lab-On-A-Chip Devices , Biomimetic Materials/chemistry
15.
Environ Res ; 251(Pt 1): 118602, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38431072

ABSTRACT

Short-chain chlorinated paraffins (SCCPs), a class of persistent organic pollutants, have been found to cause diverse organ and systemic toxicity. However, little is known about their neurotoxic effects. In this study, we exposed BV2, a mouse microglia cell line, to environmentally relevant concentration of SCCPs (1 µg/L, 10 µg/L, 100 µg/L) for 24 h to investigate their impacts on the nervous system. Our observations revealed that SCCPs induced the activation of BV2 microglia, as indicated by altered morphology, stimulated cell proliferation, enhanced phagocytic and migratory capabilities. Analysis at the mRNA level confirmed the activation status, with the downregulation of TMEM119 and Tgfbr1, and upregulation of Iba1 and CD11b. The upregulated expression of genes such as cenpe, mki67, Axl, APOE and LPL also validated alterations in cell functions. Moreover, BV2 microglia presented an M2 alternative phenotype upon SCCPs exposure, substantiated by the reduction of NF-κB, TNF-α, IL-1ß, and the elevation of TGF-ß. Additionally, SCCPs caused lipid metabolic changes in BV2 microglia, characterized by the upregulations of long-chain fatty acids and acylcarnitines, reflecting an enhancement of ß-oxidation. This aligns with our findings of increased ATP production upon SCCPs exposure. Intriguingly, cell activation coincided with elevated levels of omega-3 polyunsaturated fatty acids. Furthermore, activated microglial medium remarkably altered the proliferation and differentiation of mouse neural stem cells. Collectively, exposure to environmentally relevant concentrations of SCCPs resulted in activation and lipid metabolic alterations in BV2 microglia, potentially impacting neurogenesis. These findings provide valuable insights for further research on the neurotoxic effect of SCCPs.


Subject(s)
Lipid Metabolism , Microglia , Neurogenesis , Microglia/drug effects , Microglia/metabolism , Animals , Mice , Lipid Metabolism/drug effects , Cell Line , Neurogenesis/drug effects , Hydrocarbons, Chlorinated/toxicity , Paraffin/toxicity , Environmental Pollutants/toxicity , Cell Proliferation/drug effects
16.
Viruses ; 16(2)2024 01 24.
Article in English | MEDLINE | ID: mdl-38399951

ABSTRACT

Two strains of viruses, JC13C644 and JC13C673, were isolated from Culicoides tainanus collected in Jiangcheng County, Yunnan Province, situated along the border area shared by China, Laos, and Vietnam. JC13C644 and JC13C673 viruses can cause cytopathic effect (CPE) in mammalian cells BHK21 and Vero cells, and cause morbidity and mortality in suckling mice 48 h after intracerebral inoculation. Whole-genome sequencing was performed, yielding complete sequences for all 10 segments from Seg-1 (3942nt) to Seg-10 (810nt). Phylogenetic analysis of the sub-core-shell (T2) showed that the JC13C644 and JC13C673 viruses clustered with the Epizootic Hemorrhagic Disease Virus (EHDV) isolated from Japan and Australia, with nucleotide and amino acid homology of 93.1% to 98.3% and 99.2% to 99.6%, respectively, suggesting that they were Eastern group EHDV. The phylogenetic analysis of outer capsid protein (OC1) and outer capsid protein (OC2) showed that the JC13C644 and JC13C673 viruses were clustered with the EHDV-10 isolated from Japan in 1998, with the nucleotide homology of 98.3% and 98.5%, and the amino acid homology of 99.6% and 99.6-99.8%, respectively, indicating that they belong to the EHDV-10. Seroepidemiological survey results demonstrated that JC13C644 virus-neutralizing antibodies were present in 29.02% (177/610) of locally collected cattle serum and 11.32% (89/786) of goat serum, implying the virus's presence in Jiangcheng, Yunnan Province. This finding suggests that EHDV-10 circulates not only among blood-sucking insects in nature but also infects local domestic animals in China. Notably, this marks the first-ever isolation of the virus in China and its discovery outside of Japan since its initial isolation from Japanese cattle. In light of these results, it is evident that EHDV Serotype 10 exists beyond Japan, notably in the natural vectors of southern Eurasia, with the capacity to infect local cattle and goats. Therefore, it is imperative to intensify the surveillance of EHDV infection in domestic animals, particularly focusing on the detection and monitoring of new virus serotypes that may emerge in the region and pose risks to animal health.


Subject(s)
Ceratopogonidae , Hemorrhagic Disease Virus, Epizootic , Reoviridae Infections , Chlorocebus aethiops , Cattle , Animals , Mice , Hemorrhagic Disease Virus, Epizootic/genetics , Livestock , Serogroup , China/epidemiology , Phylogeny , Reoviridae Infections/epidemiology , Reoviridae Infections/veterinary , Capsid Proteins , Vero Cells , Goats , Amino Acids , Nucleotides
17.
Bioact Mater ; 33: 355-376, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38282639

ABSTRACT

Natural polymers are complex organic molecules that occur in the natural environment and have not been subjected to artificial synthesis. They are frequently encountered in various creatures, including mammals, plants, and microbes. The aforementioned polymers are commonly derived from renewable sources, possess a notable level of compatibility with living organisms, and have a limited adverse effect on the environment. As a result, they hold considerable significance in the development of sustainable and environmentally friendly goods. In recent times, there has been notable advancement in the investigation of the potential uses of natural polymers in the field of biomedicine, specifically in relation to natural biomaterials that exhibit antibacterial and antioxidant characteristics. This review provides a comprehensive overview of prevalent natural polymers utilized in the biomedical domain throughout the preceding two decades. In this paper, we present a comprehensive examination of the components and typical methods for the preparation of biomaterials based on natural polymers. Furthermore, we summarize the application of natural polymer materials in each stage of skin wound repair. Finally, we present key findings and insights into the limitations of current natural polymers and elucidate the prospects for their future development in this field.

18.
Int J Biol Macromol ; 256(Pt 2): 128016, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967601

ABSTRACT

Iron deficiency anemia (IDA) is a common micronutrient deficiency among pregnant women with deleterious maternal and fetal outcomes. Angelica sinensis polysaccharide (ASP) has been shown to reduce hepcidin expression in IDA rats. However, the role of ASP in the treatment of IDA during pregnancy and its potential mechanisms have not been investigated. Moreover, the effect of ASP on duodenal iron absorption is not clear. The aim of this study was to investigate the preventive efficacy of ASP against IDA during pregnancy and clarify the underlying mechanisms. Our results showed that ASP improved maternal hematological parameters, increased serum iron, maternal tissue iron, and fetal liver iron content, and improved pregnancy outcomes. Additionally, ASP combated oxidative stress caused by iron deficiency by improving the body's antioxidant capacity. Western blot results demonstrated that ASP downregulated hepcidin expression by blocking the BMP6/SMAD4, JAK2/STAT3 and TfR2/HFE signaling pathways, which in turn increased the expression of FPN1 in the liver, spleen, and duodenum and promoted iron cycling in the body. Furthermore, ASP increased the expression of DMT1 and Dcytb in the duodenum, thereby facilitating duodenal iron uptake. Our results suggest that ASP is a potential agent for the prevention and treatment of IDA during pregnancy.


Subject(s)
Angelica sinensis , Hepcidins , Humans , Pregnancy , Rats , Female , Animals , Hepcidins/metabolism , Iron/metabolism , Angelica sinensis/metabolism , Rats, Sprague-Dawley , Polysaccharides/pharmacology
19.
Adv Sci (Weinh) ; 11(1): e2304160, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37946674

ABSTRACT

Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.


Subject(s)
Neoplasms , Tissue Engineering , Humans , Neoplasms/therapy , Models, Biological , Tumor Microenvironment
20.
Adv Healthc Mater ; 13(4): e2302588, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37948613

ABSTRACT

Wound healing remains a critical challenge in regenerative engineering. Great efforts are devoted to develop functional patches for wound healing. Herein, a novel sprayable black phosphorus (BP)-based multifunctional hydrogel with on-demand removability is presented as a joints' skin wound dressing. The hydrogel is facilely prepared by mixing dopamine-modified oxidized hyaluronic acid, cyanoacetategroup-functionalized dextran containing black phosphorus, and the catalyst histidine. The catechol-containing dopamine can not only enhance tissue adhesiveness, but also endow the hydrogel with antioxidant capacity. In addition, benefiting from the photothermal conversion ability of the BP and thermally reversible performance of the formed C═C double bonds between aldehyde groups and cyanoacetate groups, the resulting hydrogel displays excellent antibacterial performance and on-demand dissolving ability under NIR irradiation. Moreover, by loading vascular endothelial growth factor into the hydrogel, the promoted migration and angiogenesis effects of endothelial cells can also be achieved. Based on these features, it is demonstrated that such sprayable BP hydrogels can effectively facilitate joint wounds healing by accelerating angiogenesis, alleviating inflammation, and improving wound microenvironment. Thus, it is believed that this NIR-responsive removable BP hydrogel dressing will put forward an innovative concept in designing wound dressings.


Subject(s)
Dopamine , Hydrogels , Hydrogels/pharmacology , Endothelial Cells , Vascular Endothelial Growth Factor A , Aldehydes , Anti-Bacterial Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...