Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 736
Filter
1.
Chem Biol Interact ; 398: 111107, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866309

ABSTRACT

Benzene is the main environmental pollutant and risk factor of childhood leukemia and chronic benzene poisoning. Benzene exposure leads to hematopoietic stem and progenitor cell (HSPC) dysfunction and abnormal blood cell counts. However, the key regulatory targets and mechanisms of benzene hematotoxicity are unclear. In this study, we constructed a benzene-induced hematopoietic damage mouse model to explore the underlying mechanisms. We identified that Insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) was significantly reduced in benzene-exposed mice. Moreover, targeting IGF2BP1 effectively mitigated damages to hematopoietic function and hematopoietic molecule expression caused by benzene in mice. On the mechanics, by metabolomics and transcriptomics, we discovered that branched-chain amino acid (BCAA) metabolism and fatty acid oxidation were key metabolic pathways, and Branched-chain amino acid transaminase 1 (BCAT1) and Carnitine palmitoyltransferase 1a (CPT1A) were critical metabolic enzymes involved in IGF2BP1-mediated hematopoietic injury process. The expression of the above molecules in the benzene exposure population was also examined and consistent with animal experiments. In conclusion, targeting IGF2BP1 alleviated hematopoietic injury caused by benzene exposure, possibly due to the reprogramming of BCAA metabolism and fatty acid oxidation via BCAT1 and CPT1A metabolic enzymes. IGF2BP1 is a potential regulatory and therapeutic target for benzene hematotoxicity.

2.
Food Res Int ; 188: 114531, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823850

ABSTRACT

Different emulsion gel systems are widely applied to deliver functional ingredients. The effects and mechanisms of ultrasound-assisted emulsification (UAE) treatment and carboxymethyl cellulose (CMC) modifying the curcumin delivery properties and in vitro digestibility of the myofibrillar protein (MP)-soybean oil emulsion gels were investigated. The rheological properties, droplet size, protein and CMC distribution, ultrastructure, surface hydrophobicity, sulfhydryl groups, and zeta potential of emulsion gels were also measured. Results indicate that UAE treatment and CMC addition both improved curcumin encapsulation and protection efficiency in MP emulsion gel, especially for the UAE combined with CMC (UAE-CMC) treatment which encapsulation efficiency, protection efficiency, the release rate, and bioaccessibility of curcumin increased from 86.75 % to 97.67 %, 44.85 % to 68.85 %, 18.44 % to 41.78 %, and 28.68 % to 44.93 % respectively. The protein digestibility during the gastric stage was decreased after the CMC addition and UAE treatment, and the protein digestibility during the intestinal stage was reduced after the CMC addition. The fatty acid release rate was increased after CMC addition and UAE treatment. Apparent viscosity, storage modulus, and loss modulus were decreased after CMC addition while increased after UAE and UAE-CMC treatment especially the storage modulus increased from 0.26 Pa to 41 Pa after UAE-CMC treatment. The oil size was decreased, the protein and CMC concentration around the oil was increased, and a denser and uniform emulsion gel network structure was formed after UAE treatment. The surface hydrophobicity, free SH groups, and absolute zeta potential were increased after UAE treatment. The UAE-CMC treatment could strengthen the MP emulsion gel structure and decrease the oil size to increase the curcumin delivery properties, and hydrophobic and electrostatic interaction might be essential forces to maintain the emulsion gel.


Subject(s)
Carboxymethylcellulose Sodium , Curcumin , Digestion , Emulsions , Gels , Hydrophobic and Hydrophilic Interactions , Rheology , Curcumin/chemistry , Emulsions/chemistry , Carboxymethylcellulose Sodium/chemistry , Gels/chemistry , Muscle Proteins , Soybean Oil/chemistry , Viscosity , Particle Size , Myofibrils/chemistry , Myofibrils/metabolism , Ultrasonic Waves
3.
Adv Mater ; : e2403111, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934213

ABSTRACT

Bioelectronics is an exciting field that bridges the gap between physiological activities and external electronic devices, striving for high resolution, high conformability, scalability, and ease of integration. One crucial component in bioelectronics is bioelectrodes, designed to convert neural activity into electronic signals or vice versa. Previously reported bioelectrodes have struggled to meet several essential requirements simultaneously: high-fidelity signal transduction, high charge injection capability, strain resistance, and multi-functionality. This work introduces a novel strategy for fabricating superior bioelectrodes by merging multiple charge-transfer processes. The resulting bioelectrodes offer accurate ion-to-electron transduction for capturing electrophysiological signals, dependable charge injection capability for neuromodulation, consistent electrode potential for artifact rejection and biomolecule sensing, and high transparency for seamless integration with optoelectronics. Furthermore, the bioelectrode can be designed to be strain-insensitive by isolating signal transduction from electron transportation. The innovative concept presented in this work holds great promise for extending to other electrode materials and paves the way for the advancement of multimodal bioelectronics. This article is protected by copyright. All rights reserved.

4.
Sci Total Environ ; 946: 174300, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38936707

ABSTRACT

Microplastics (MPs) have been found in the air, human nasal cavity, and lung, suggesting that the respiratory tract is one of the important exposure routes for MPs. The lung is a direct target organ for injury from inhaled MPs, but data on lung injury from longer-term exposure to environmental doses of MPs are limited, and the mechanisms remain unclear. Here, C57BL/6 J mice were treated with 5 µm polystyrene (PS)-MPs by intratracheal instillation (0.6, 3, and 15 mg/kg) for 60 days to establish MPs exposure model. We found that PS-MPs lead to increased collagen fibers and decreased lung barrier permeability and lung function in lung tissue. Mechanistically, the abundance of gram-negative bacteria in the pulmonary flora increased after inhalation of PS-MPs, causing lipopolysaccharide (LPS) release. The expression of Toll-like receptor 4 (TLR4), the key receptor of LPS, was increased, and ferroptosis occurred in lung tissue cells. Further in vitro intervention experiments were performed, pulmonary flora/TLR4-induced imbalance of lung iron homeostasis is an important mechanism of PS-MPs-induced lung injury. Our study provides new evidence for lung injury caused by environmental doses of MPs and strategies to prevent it through longer-term dynamic observation.

5.
Comput Methods Programs Biomed ; 254: 108280, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38878361

ABSTRACT

BACKGROUND AND OBJECTIVE: Transformer, which is notable for its ability of global context modeling, has been used to remedy the shortcomings of Convolutional neural networks (CNN) and break its dominance in medical image segmentation. However, the self-attention module is both memory and computational inefficient, so many methods have to build their Transformer branch upon largely downsampled feature maps or adopt the tokenized image patches to fit their model into accessible GPUs. This patch-wise operation restricts the network in extracting pixel-level intrinsic structural or dependencies inside each patch, hurting the performance of pixel-level classification tasks. METHODS: To tackle these issues, we propose a memory- and computation-efficient self-attention module to enable reasoning on relatively high-resolution features, promoting the efficiency of learning global information while effective grasping fine spatial details. Furthermore, we design a novel Multi-Branch Transformer (MultiTrans) architecture to provide hierarchical features for handling objects with variable shapes and sizes in medical images. By building four parallel Transformer branches on different levels of CNN, our hybrid network aggregates both multi-scale global contexts and multi-scale local features. RESULTS: MultiTrans achieves the highest segmentation accuracy on three medical image datasets with different modalities: Synapse, ACDC and M&Ms. Compared to the Standard Self-Attention (SSA), the proposed Efficient Self-Attention (ESA) can largely reduce the training memory and computational complexity while even slightly improve the accuracy. Specifically, the training memory cost, FLOPs and Params of our ESA are 18.77%, 20.68% and 74.07% of the SSA. CONCLUSIONS: Experiments on three medical image datasets demonstrate the generality and robustness of the designed network. The ablation study shows the efficiency and effectiveness of our proposed ESA. Code is available at: https://github.com/Yanhua-Zhang/MultiTrans-extension.

6.
Int J Surg ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913439

ABSTRACT

BACKGROUND: Vascular diseases represent a significant causes of disability and death worldwide. The demand for artificial blood vessels is increasing due to the scarce supply of healthy autologous vessels. Nevertheless, the literature in this area remains sparse and inconclusive. METHODS: Bibliometrics is the study of quantitative analysis of publications and their patterns. This study conducts a bibliometric analysis of publications on artificial blood vessels in the 21st century, examining performance distribution, research trajectories, the evolution of research hotspots, and the exploration of the knowledge base. This approach provides comprehensive insights into the knowledge structure of the field. RESULTS: The search retrieved 2,060 articles, showing a consistent rise in the publication volume and average annual citation frequency related to artificial blood vessels research. The United States is at the forefront of high-quality publications and international collaborations. Among academic institutions, Yale University is a leading contributor. The dominant disciplines within the artificial blood vessels sector include engineering, biomedical sciences, materials science, biomaterials science, and surgery, with surgery experiencing the most rapid expansion. CONCLUSIONS: This study is the inaugural effort to bibliometric analyze and visualize the scholarly output in the artificial blood vessels domain. It provides clinicians and researchers with a reliable synopsis of the field's current state, offering a reference point for existing research and suggesting new avenues for future investigations.

7.
Langmuir ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38912614

ABSTRACT

Taking µ-HMX particles as the main research subject, a set of microdroplet sphericalization coating technology platforms was designed and constructed to realize the preparation of composite microspheres by sphericalization coating of µ-HMX. The suspension stability of µ-HMX particles and the mechanism of droplet formation were investigated, and the application effect of nanocarbon materials was also analyzed. The results showed that the prepared sample microspheres all showed a better spherical morphology, as well as good dispersibility; the samples with micron-sized particles for spherical coating had a lower thermal decomposition temperature, a higher energy release efficiency, lower mechanical sensibility, and better combustion performance; the incorporation of CNFs changed the combustion mode of the system, which resulted in the microsphere system of µ-HMX having a good safety performance. The stability and feasibility of uniform spheronization when the dispersed phase is a low-concentration particle suspension system in the spheronization encapsulation process by microdroplet technology were verified.

8.
J Opt Soc Am A Opt Image Sci Vis ; 41(6): 1044-1058, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38856416

ABSTRACT

The performance analysis of a free space optical (FSO) communication system in the presence of random jamming is presented over a Málaga (M) distributed channel model with pointing errors and atmospheric attenuation. Firstly, the probability density function expressions of the transmission channel, signal-to-jamming ratio, and signal-to-noise ratio are derived. Then, considering the probability of the jammer and Gaussian white noise, the closed-form expressions for the ergodic channel capacity, outage probability, and average bit error rate are derived. Moreover, asymptotic expressions for the aforementioned performance metrics are also derived to ascertain the diversity gain of the system. Extensive Monte Carlo simulations are performed to demonstrate the credibility of this theoretical analysis. Results indicate that the adverse impact of random jamming is higher than that of Gaussian noise for the FSO communication system. Besides, this observation highlights the pulsating nature of the jamming effect, showcasing that within high signal-to-jamming ratio regions, a low probability jammer exerts the most significant impact on the FSO system.

9.
Front Immunol ; 15: 1361323, 2024.
Article in English | MEDLINE | ID: mdl-38835763

ABSTRACT

Introduction: Swine influenza viruses (SIVs) pose significant economic losses to the pig industry and are a burden on global public health systems. The increasing complexity of the distribution and evolution of different serotypes of influenza strains in swine herds escalates the potential for the emergence of novel pandemic viruses, so it is essential to develop new vaccines based on swine influenza. Methods: Here, we constructed a self-assembling ferritin nanoparticle vaccine based on the hemagglutinin (HA) extracellular domain of swine influenza A (H1N1) virus using insect baculovirus expression vector system (IBEVS), and after two immunizations, the immunogenicities and protective efficacies of the HA-Ferritin nanoparticle vaccine against the swine influenza virus H1N1 strain in mice and piglets were evaluated. Results: Our results demonstrated that HA-Ferritin nanoparticle vaccine induced more efficient immunity than traditional swine influenza vaccines. Vaccination with the HA-Ferritin nanoparticle vaccine elicited robust hemagglutinin inhibition titers and antigen-specific IgG antibodies and increased cytokine levels in serum. MF59 adjuvant can significantly promote the humoral immunity of HA-Ferritin nanoparticle vaccine. Furthermore, challenge tests showed that HA-Ferritin nanoparticle vaccine conferred full protection against lethal challenge with H1N1 virus and significantly decreased the severity of virus-associated lung lesions after challenge in both BALB/c mice and piglets. Conclusion: Taken together, these results indicate that the hemagglutinin extracellular-based ferritin nanoparticle vaccine may be a promising vaccine candidate against SIVs infection.


Subject(s)
Antibodies, Viral , Ferritins , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Influenza Vaccines , Mice, Inbred BALB C , Nanoparticles , Orthomyxoviridae Infections , Animals , Influenza A Virus, H1N1 Subtype/immunology , Ferritins/immunology , Influenza Vaccines/immunology , Swine , Mice , Orthomyxoviridae Infections/prevention & control , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/virology , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Swine Diseases/prevention & control , Swine Diseases/immunology , Swine Diseases/virology , Female , Nanovaccines
10.
J Environ Manage ; 364: 121209, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38878566

ABSTRACT

Climate change exhibits a clear trend of escalating frequency and intensity of extreme weather events, posing heightened risks to drainage systems along the existing road networks. However, very few studies to date have investigated the consequences of projected future changes in rainfall on main road drainage and the resulting risk of road flooding. The work presented in this paper builds on the limited research by introducing a probabilistic model for assessing the impact of climate change on road drainage systems, incorporating climate uncertainty and drainage system variation. The probabilistic scenario-based model and associated framework offer a practical and innovative method for estimating the impact of short-duration storms under future climates for 2071-2100, in the absence of fine-resolution spatio-temporal data. The model also facilitates the assessment of the effectiveness of a climate adaptation strategy. An illustrative case-study of a road drainage system located in the south of Ireland is presented. It was found that the probability of road flooding during intense rainfall is projected to surpass the current acceptable limits set by Irish standards. Assessment of a proactive climate adaptation strategy implemented in 2015 indicated it may need to be adjusted to further reduce climate change impacts and optimise adaptation costs.


Subject(s)
Climate Change , Floods , Rain , Ireland , Models, Theoretical , Drainage
11.
Sci Rep ; 14(1): 14145, 2024 06 19.
Article in English | MEDLINE | ID: mdl-38898042

ABSTRACT

This study probes the utility of biomarkers for microsatellite instability (MSI) detection and elucidates the molecular dynamics propelling colorectal cancer (CRC) progression. We synthesized a primer panel targeting 725 MSI loci, informed by The Cancer Genome Atlas (TCGA) and ancillary databases, to construct an amplicon library for next-generation sequencing (NGS). K-means clustering facilitated the distillation of 8 prime MSI loci, including activin A receptor type 2A (ACVR2A). Subsequently, we explored ACVR2A's influence on CRC advancement through in vivo tumor experiments and hematoxylin-eosin (HE) staining. Transwell assays gauged ACVR2A's role in CRC cell migration and invasion, while colony formation assays appraised cell proliferation. Western blotting illuminated the impact of ACVR2A suppression on CRC's PI3K/AKT/mTOR pathway protein expressions under hypoxia. Additionally, ACVR2A's influence on CRC-induced angiogenesis was quantified via angiogenesis assays. K-means clustering of NGS data pinpointed 32 MSI loci specific to tumor and DNA mismatch repair deficiency (dMMR) tissues. ACVR2A emerged as a pivotal biomarker, discerning MSI-H tissues with 90.97% sensitivity. A curated 8-loci set demonstrated 100% sensitivity and specificity for MSI-H detection in CRC. In vitro analyses corroborated ACVR2A's critical role, revealing its suppression of CRC proliferation, migration, and invasion. Moreover, ACVR2A inhibition under CRC-induced hypoxia markedly escalated MMP3, CyclinA, CyclinD1, and HIF1α protein expressions, alongside angiogenesis, by triggering the PI3K/AKT/mTOR cascade. The 8-loci ensemble stands as the optimal marker for MSI-H identification in CRC. ACVR2A, a central element within this group, deters CRC progression, while its suppression amplifies PI3K/AKT/mTOR signaling and angiogenesis under hypoxic stress.


Subject(s)
Activin Receptors, Type II , Cell Movement , Colorectal Neoplasms , Disease Progression , Microsatellite Instability , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Humans , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Animals , Cell Movement/genetics , Mice , Cell Line, Tumor , Cell Proliferation/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Signal Transduction , Male , High-Throughput Nucleotide Sequencing , Female , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics
12.
Genes (Basel) ; 15(6)2024 May 21.
Article in English | MEDLINE | ID: mdl-38927585

ABSTRACT

This research focuses on 72 approved varieties of colored wheat from different provinces in China. Utilizing coefficients of variation, structural equation models, and correlation analyses, six agronomic traits of colored wheat were comprehensively evaluated, followed by further research on different dwarfing genes in colored wheat. Using the entropy method revealed that among the 72 colored wheat varieties, 10 were suitable for cultivation. Variety 70 was the top-performing variety, with a comprehensive index of 87.15%. In the final established structural equation model, each agronomic trait exhibited a positive direct effect on yield. Notably, plant height, spike length, and flag leaf width had significant impacts on yield, with path coefficients of 0.55, 0.40, and 0.27. Transcriptome analysis and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) validation were used to identify three dwarfing genes controlling plant height: Rht1, Rht-D1, and Rht8. Subsequent RT-qPCR validation clustering heatmap results indicated that Rht-D1 gene expression increased with the growth of per-acre yield. Rht8 belongs to the semi-dwarf gene category and has a significant positive effect on grain yield. However, the impact of Rht1, as a dwarfing gene, on agronomic traits varies. These research findings provide crucial references for the breeding of new varieties.


Subject(s)
Triticum , Triticum/genetics , Triticum/growth & development , Plant Proteins/genetics , Gene Expression Regulation, Plant , China , Genes, Plant/genetics , Phenotype , Edible Grain/genetics , Edible Grain/growth & development , Plant Breeding/methods , Quantitative Trait, Heritable , Gene Expression Profiling/methods
13.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38713944

ABSTRACT

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Subject(s)
Colitis, Ulcerative , Disease Models, Animal , Inflammasomes , Isothiocyanates , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidative Stress , Sulfoxides , Animals , Isothiocyanates/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Sulfoxides/pharmacology , Oxidative Stress/drug effects , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Colitis, Ulcerative/chemically induced , Inflammasomes/metabolism , Inflammasomes/drug effects , Mice , Male , Dextran Sulfate , Colon/drug effects , Colon/pathology , Colon/metabolism , RAW 264.7 Cells
14.
Environ Pollut ; 352: 124100, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714232

ABSTRACT

Decabromodiphenyl ether (BDE-209) has been universally detected in environmental media and animals, but its damage to ovarian function and mechanism is still unclear, and melatonin has been shown to improve mammalian ovarian function. This study aimed to investigate the toxic effects of BDE-209 on the ovary and tried to improve ovarian function with melatonin. Herein, BDE-209 was administered orally to female SD rats for 60 days. Enzyme-linked immunosorbent assay, HE staining, transcriptome analysis, qPCR and immunohistochemical staining were used to explore and verify the potential mechanism. We found that BDE-209 exposure had effects on the ovary, as shown by abnormal changes in the estrous cycle, hormone levels and ovarian reserve function in rats, while increasing the proportion of collagen fibres in ovarian tissue. In terms of mechanism, cuproptosis, a form of cell death, was identified to play a crucial role in BDE-209-induced ovarian dysfunction, with the phenotype manifested as copper salt accumulation in ovary, downregulation of glutathione pathway metabolism and copper transfer molecule (ATP7A/B), and upregulation of FDX1, lipoic acid pathway (LIAS, LIPT1), pyruvate dehydrogenase complex components (DLAT, PDHB, PDHA1), and copper transfer molecule (SLC31A1). Furthermore, possible interventions were explored. Notably, a supplement with melatonin has a repair effect on the damage to ovarian function by reversing the gene expression of cuproptosis-involved molecules. Overall, this study revealed that cuproptosis is involved in BDE-209-induced ovarian damage and the beneficial effect of melatonin on ovarian copper damage, providing evidence for the prevention and control of female reproductive damage induced by BDE-209.


Subject(s)
Halogenated Diphenyl Ethers , Melatonin , Ovary , Rats, Sprague-Dawley , Animals , Melatonin/pharmacology , Female , Halogenated Diphenyl Ethers/toxicity , Ovary/drug effects , Ovary/metabolism , Rats , Protective Agents/pharmacology , Environmental Pollutants/toxicity
15.
Zookeys ; 1200: 41-63, 2024.
Article in English | MEDLINE | ID: mdl-38736701

ABSTRACT

In this study, 21 species of Hybos Meigen, 1803 are reviewed in Huaping National Nature Reserve, China. Among these, three species, i.e., Hybosdenticulatussp. nov., Hybosforcipatasp. nov. and H.paraterminalissp. nov., are described as new to science. In addition, nine known species of this genus are reported for the first time in Guangxi. All the known species were enumerated, and an identification key to the species of Hybos from Huaping National Nature Reserve based on morphological characteristics is provided.

16.
Pharmaceutics ; 16(5)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38794255

ABSTRACT

BACKGROUND: Small extracellular vesicles (sEVs) obtained from human umbilical cord mesenchymal stromal cells (MSCs) have shown cardioprotective efficacy in doxorubicin-induced cardiotoxicity (DIC). However, their clinical application is limited due to the low yield and high consumption. This study aims to achieve large-scale production of sEVs using a three-dimensional (3D) bioreactor system. In addition, sEVs were developed to deliver Ginsenoside Rg1 (Rg1), a compound derived from traditional Chinese medicine, Ginseng, that has cardioprotective properties but limited bioavailability, to enhance the treatment of DIC. METHODS: The 3D bioreactor system with spinner flasks was used to expand human umbilical cord MSCs and collect MSC-conditioned medium. Subsequently, sEVs were isolated from the conditioned medium using differential ultra-centrifugation (dUC). The sEVs were loaded with Ginsenoside Rg1 by electroporation and evaluated for cardioprotective efficacy using Cell Counting Kit-8 (CCK-8) analysis, Annexin V/PI staining and live cell count of H9c2 cells under DIC. RESULTS: Using the 3D bioreactor system with spinner flasks, the expansion of MSCs reached ~600 million, and the production of sEVs was up to 2.2 × 1012 particles in five days with significantly reduced bench work compared to traditional 2D flasks. With the optimized protocol, the Ginsenoside Rg1 loading efficiency of sEVs by electroporation was ~21%, higher than sonication or co-incubation. Moreover, Rg1-loaded sEVs had attenuated DOX-induced cardiotoxicity with reduced apoptosis compared to free Ginsenoside Rg1 or sEVs. CONCLUSIONS: The 3D culture system scaled up the production of sEVs, which facilitated the Rg1 delivery and attenuated cardiomyocyte apoptosis, suggesting a potential treatment of DOX-induced cardiotoxicity.

17.
BMC Cancer ; 24(1): 611, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773399

ABSTRACT

RNA interactomes and their diversified functionalities have recently benefited from critical methodological advances leading to a paradigm shift from a conventional conception on the regulatory roles of RNA in pathogenesis. However, the dynamic RNA interactomes in adenoma-carcinoma sequence of human CRC remain unexplored. The coexistence of adenoma, cancer, and normal tissues in colorectal cancer (CRC) patients provides an appropriate model to address this issue. Here, we adopted an RNA in situ conformation sequencing technology for mapping RNA-RNA interactions in CRC patients. We observed large-scale paired RNA counts and identified some unique RNA complexes including multiple partners RNAs, single partner RNAs, non-overlapping single partner RNAs. We focused on the antisense RNA OIP5-AS1 and found that OIP5-AS1 could sponge different miRNA to regulate the production of metabolites including pyruvate, alanine and lactic acid. Our findings provide novel perspectives in CRC pathogenesis and suggest metabolic reprogramming of pyruvate for the early diagnosis and treatment of CRC.


Subject(s)
Adenoma , Colorectal Neoplasms , MicroRNAs , Pyruvic Acid , RNA, Long Noncoding , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , MicroRNAs/genetics , MicroRNAs/metabolism , Adenoma/genetics , Adenoma/metabolism , Adenoma/pathology , Pyruvic Acid/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Metabolic Reprogramming
18.
J Infect Public Health ; 17(6): 1079-1085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705060

ABSTRACT

BACKGROUND: Annual influenza vaccination is crucially recommended for the elderly to maintain humoral immunity. Insufficient coverage requires us to understand the determinants of their influenza behaviors and how these patterns impact vaccination choices. METHODS: Data from 540 Beijing residents aged over 65 were collected through interviews, capturing vaccination history and sociodemographic details. Individual influenza vaccination records from 2016 to 2020 were obtained from China's Immunization Information Systems. A latent class model identified three vaccination patterns. Multinomial logistic regression assessed relative risk ratios (RRRs) for vaccination based on sociodemographic factors. Vaccination patterns were used to predict future vaccination likelihood. RESULTS: The analysis revealed three groups: sporadically vaccinated (63.33%), occasionally vaccinated (18.71%), and frequently vaccinated (17.96%). Factors associated with frequent vaccination included age over 70 (RRR = 2.81), lower income (RRR = 0.39), higher vaccine hesitancy (RRR = 3.10), multiple chronic conditions (RRR = 2.72), and rural residence (RRR = 2.48). The frequently vaccinated group was more likely to sustain regular vaccination habits in subsequent years compared to the occasionally vaccinated group. CONCLUSIONS: Only 17.96% of Beijing's older population exhibited a consistent influenza vaccination pattern. Older age, rural residency, and chronic diseases correlated with repeated influenza vaccination. Segmenting the population based on past vaccination behavior can aid in designing targeted interventions to improve vaccination rates.


Subject(s)
Influenza Vaccines , Influenza, Human , Vaccination , Humans , Male , Female , Aged , Influenza Vaccines/administration & dosage , Influenza, Human/prevention & control , Vaccination/statistics & numerical data , Vaccination/psychology , Aged, 80 and over , China , Beijing , Patient Acceptance of Health Care/statistics & numerical data , Vaccination Coverage/statistics & numerical data
19.
Ecotoxicol Environ Saf ; 279: 116484, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38820875

ABSTRACT

Myclobutanil (MYC) is a common triazole fungicide widely applied in agriculture. MYC extensively exists in the natural environment and can be detected in organisms. However, little is known about MYC-induced embryonic developmental damage. This study aimed to unravel the cardiotoxicity of MYC and the underlying mechanisms, as well as the cardioprotective effect of curcumin (CUR, an antioxidant polyphenol) using the zebrafish model. Here, zebrafish embryos were exposed to MYC at concentrations of 0, 0.5, 1 and 2 mg/L from 4 to 96 h post fertilization (hpf) and cardiac development was assessed. As results, MYC reduced the survival and hatching rate, body length and heart rate, but increased the malformation rate and spontaneous movement. MYC caused abnormal cardiac morphology and function in myl7:egfp transgenic zebrafish, and downregulated cardiac developmental genes. MYC promoted oxidative stress through excessive reactive oxygen species (ROS) accumulation and suppressed the activities of antioxidant enzymes, triggering cardiomyocytic apoptosis via upregulated expression of apoptosis-related genes. These adverse toxicities could be significantly ameliorated by the antioxidant properties of CUR, indicating that CUR rescued MYC-induced cardiotoxicity by inhibiting oxidative stress and apoptosis. Overall, our study revealed the potential mechanisms of oxidative stress and apoptosis in MYC-induced cardiotoxicity in zebrafish and identified the cardioprotection of CUR in this pathological process.


Subject(s)
Apoptosis , Cardiotoxicity , Curcumin , Fungicides, Industrial , Oxidative Stress , Triazoles , Zebrafish , Animals , Oxidative Stress/drug effects , Curcumin/pharmacology , Apoptosis/drug effects , Triazoles/toxicity , Fungicides, Industrial/toxicity , Larva/drug effects , Reactive Oxygen Species/metabolism , Animals, Genetically Modified , Embryo, Nonmammalian/drug effects , Antioxidants/pharmacology , Water Pollutants, Chemical/toxicity , Heart/drug effects , Nitriles
20.
Opt Express ; 32(7): 11079-11091, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570965

ABSTRACT

Freespace optical (FSO) communication in an outdoor setting is complicated by atmospheric turbulence (AT). A time-varying (TV) multiplexed orbital angular momentum (OAM) propagation model to consider AT under transverse-wind conditions is formulated for the first time, and optimized dynamic correction periods for various TV AT situations are found to improve the transmission efficiency. The TV nature of AT has until now been neglected from modeling of OAM propagation models, but it is shown to be important. First, according to the Taylor frozen-turbulence hypothesis, a series of AT phase screens influenced by transverse wind are introduced into the conventional angular-spectrum propagation analysis method to model both the temporal and spatial propagation characteristics of multiplexed OAM beams. Our model shows that while in weak TV AT, the power standard deviation of lower-order modes is usually smaller than that of higher-order modes, the phenomena in strong TV AT are qualitatively different. Moreover, after analyzing the effective time of each OAM phase correction, optimized dynamic correction periods for a dynamic feedback communication link are obtained. An optimized result shows that, under the moderate TV AT, both a system BER within the forward-error-correction limit and a low iterative computation volume with 6% of the real-time correction could be achieved with a correction period of 0.18 s. The research emphasizes the significance of establishing a TV propagation model for exploring the effect of TV AT on multiplexed OAM beams and proposing an optimized phase-correction mechanism to mitigate performance degradation caused by TV AT, ultimately enhancing overall transmission efficiency.

SELECTION OF CITATIONS
SEARCH DETAIL
...