Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
ACS Nano ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875126

ABSTRACT

High-performance tactile sensors with skin-sensing properties are crucial for intelligent perception in next-generation smart devices. However, previous studies have mainly focused on the sensitivity and response range of tactile sensation while neglecting the ability to recognize object softness. Therefore, achieving a precise perception of the softness remains a challenge. Here, we report an integrated tactile sensor consisting of a central hole gradient structure pressure sensor and a planar structure strain sensor. The recognition of softness and tactile perception is achieved through the synergistic effect of pressure sensors that sense the applied pressure and strain sensors that recognize the strain of the target object. The results indicate that the softness evaluation parameter (SC) of the integrated structural tactile sensor increases from 0.14 to 0.47 along with Young's modulus of the object decreasing from 2.74 to 0.45 MPa, demonstrating accurate softness recognition. It also exhibits a high sensitivity of 10.55 kPa-1 and an ultrawide linear range of 0-1000 kPa, showing an excellent tactile sensing capability. Further, an intelligent robotic hand system based on integrated structural tactile sensors was developed, which can identify the softness of soft foam and glass and grasp them accurately, indicating human skin-like sensing and grasping capabilities.

2.
ACS Nano ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870206

ABSTRACT

Second harmonic generation (SHG) in van der Waals (vdW) materials has garnered significant attention due to its potential for integrated nonlinear optical and optoelectronic applications. Stacking faults in vdW materials are a typical kind of planar defect that introduces a degree of freedom to modulate the crystal symmetry and resultant SHG response. However, the physical origin and tunability of stacking-fault-governed SHG in vdW materials remain unclear. Here, taking the intrinsically centrosymmetric vdW RhI3 as an example, we theoretically reveal the origin of stacking-fault-governed SHG response, where the SHG response comes from the energetically favorable AC̅ stacking fault of which the electrical transitions along the high-symmetry paths Γ-M and Γ-K in the Brillion zone play the dominant role at 810 nm. Such a stacking-fault-governed SHG response is further confirmed via structural characterizations and SHG measurements. Furthermore, by applying hydrostatic pressure on RhI3, the correlation between structural evolution and SHG response is revealed with SHG enhancement up to 6.9 times, where the decreased electronic transition energies and higher momentum matrix elements due to the stronger interlayer interactions upon compression magnify the SHG susceptibility. This study develops a promising foundation for nonlinear nano-optics applications through the strategic design of stacking faults.

3.
Anal Biochem ; 691: 115553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38697592

ABSTRACT

We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.


Subject(s)
Acetic Acid , Electrophoresis, Polyacrylamide Gel , Methanol , Microwaves , Proteins , Electrophoresis, Polyacrylamide Gel/methods , Methanol/chemistry , Proteins/analysis , Acetic Acid/chemistry , Staining and Labeling/methods , Rosaniline Dyes/chemistry
4.
Front Surg ; 11: 1304202, 2024.
Article in English | MEDLINE | ID: mdl-38752129

ABSTRACT

Objective: Extensor tendon adhesion receive less attention recently. This study aims to analyze influencing factors of adhesion and prolonged lost days of work in patients with extensor tendon adhesion of the hand. Method: We performed a retrospective study in patients with extensor tendon injuries who underwent primary surgical repair and early rehabilitation. We observed the differences between non-tendon adhesion and adhesion patients after surgical repair, and used the receiver operating characteristic curve to distinguish them. Then we explored the influencing factors of adhesion. In addition, we studied the lost days of work and the influencing factors. Results: A total of 305 patients were included. 24.6% patients appeared tendon adhesion and the mean lost days of work was 12 weeks. MHISS scores, VAS scores, occupation and blood triglyceride level were the influencing factors of adhesion. The adhesion patients have increased MHISS scores (p < 0.001), VAS scores (p < 0.001), blood triglyceride levels (p < 0.001) and lost days of work (p < 0.001) than non-tendon adhesion. The optimal cut-off value of blood triglyceride level to distinguish non-tendon adhesion from adhesion was 1.625 mml/L, and MHISS scores was 20.5. Smoking, MHISS scores, blood triglyceride levels were the influencing factors of lost days of work in adhesion patients. There was positive correlation between lost days of work and triglyceride level (r = 0.307, p = 0.007), and MHISS scores (r = 0.276, p = 0.016). Conclusion: To minimize the occurrence of adhesion, doctors should pay attention to patients with higher MHISS and VAS scores, blood triglyceride levels, especial for the blue-collar and unemployed one. High triglyceride level may be a new influencing factor.

5.
Exp Appl Acarol ; 92(3): 403-421, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38489086

ABSTRACT

Spider mites (Acari: Tetranychidae) are polyphagous pests of economic importance in agriculture, among which the two-spotted spider mite Tetranychus urticae Koch has spread widely worldwide as an invasive species, posing a serious threat to fruit tree production in China, including Beijing. The hawthorn spider mite, Amphitetranychus viennensis Zacher, is also a worldwide pest of fruit trees and woody ornamental plants. The cassava mite, Tetranychus truncatus Ehara, is mainly found in Asian countries, including China, Korea and Japan, and mainly affects fruit trees and agricultural crops. These three species of spider mites are widespread and serious fruit tree pests in Beijing. Rapid and accurate identification of spider mites is essential for effective pest and plant quarantine in Beijing orchard fields. The identification of spider mite species is difficult due to their limited morphological characteristics. Although the identification of insect and mite species based on PCR and real-time polymerase chain reaction TaqMan is becoming increasingly common, DNA extraction is difficult, expensive and time-consuming due to the minute size of spider mites. Therefore, the objective of this study was to establish a direct multiplex PCR method for the simultaneous identification of three common species of spider mites in orchards, A. viennensis, T. truncatus and T. urticae, to provide technical support for the differentiation of spider mite species and phytosanitary measures in orchards in Beijing. Based on the mitochondrial cytochrome c oxidase subunit I (COI) of the two-spotted spider mite and the cassava mite and the 18S gene sequence of the hawthorn spider mite as the amplification target, three pairs of specific primers were designed, and the primer concentrations were optimized to establish a direct multiplex PCR system for the rapid and accurate discrimination of the three spider mites without the need for DNA extraction and purification. The method showed a high sensitivity of 0.047 ng for T. truncatus and T. urticae DNA and 0.0002 ng for A. viennensis. This method eliminates the DNA extraction and sequencing procedures of spider mite samples, offers a possibility for rapid monitoring of multiple spider mites in an integrated microarray laboratory system, reducing the time and cost of leaf mite identification and quarantine monitoring in the field.


Subject(s)
Multiplex Polymerase Chain Reaction , Tetranychidae , Animals , Tetranychidae/genetics , Multiplex Polymerase Chain Reaction/methods , Beijing , Electron Transport Complex IV/genetics
7.
ACS Appl Mater Interfaces ; 16(13): 16678-16686, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38503721

ABSTRACT

Photodetectors with a broad-band response range are widely used in many fields and are regarded as pivotal components of the modern miniaturized electronics industry. However, commercial broad-band photodetectors composed of traditional bulk semiconductor materials are still limited by complex preparation techniques, high costs, and a lack of mechanical strength and flexibility, which are difficult to satisfy the increasing demand for flexible and wearable optoelectronics. Therefore, researchers have been devoted to finding new strategies to obtain flexible, stable, and high-performance broad-band photodetectors. In this work, a novel self-assembled BiGaSeAs composite superlattice-structured nanowire was developed with a simple chemical vapor deposition method for easy fabrication. After the device assembling, the photodetector showed outstanding performance in terms of obvious Ion/Ioff (13.9), broad-band photoresponse (365-940 nm), excellent responsivity (1007.67 A/W), high detectivity (9.38 × 109 Jones), and rapid response (21 and 23 ms). The formation of microheterojunctions among various materials inside the nanowires also contributed to their extended broad-spectrum response and outstanding detection ability. These results indicate that the BiGaSeAs nanowires have potential applications in the field of flexible and wearable electronics.

8.
Adv Sci (Weinh) ; 11(13): e2309293, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38258489

ABSTRACT

The efficiency of photocatalytic hydrogen evolution is currently limited by poor light adsorption, rapid recombination of photogenerated carriers, and ineffective surface reaction rate. Although heterojunctions with innovative morphologies and structures can strengthen built-in electric fields and maximize the separation of photogenerated charges. However, how to rational design of novel multidimensional structures to simultaneously improve the above three bottleneck problems is still a research imperative. Herein, a unique Cu2O─S@graphene oxide (GO)@Zn0.67Cd0.33S Three dimensional (3D) hollow heterostructure is designed and synthesized, which greatly extends the carrier lifetime and effectively promotes the separation of photogenerated charges. The H2 production rate reached 48.5 mmol g-1 h-1 under visible light after loading Ni2+ on the heterojunction surface, which is 97 times higher than that of pure Zn0.67Cd0.33S nanospheres. Furthermore, the H2 production rate can reach 77.3 mmol g-1 h-1 without cooling, verifying the effectiveness of the photothermal effect. Meanwhile, in situ characterization and density flooding theory calculations reveal the efficient charge transfer at the p-n 3D hollow heterojunction interface. This study not only reveals the detailed mechanism of photocatalytic hydrogen evolution in depth but also rationalizes the construction of superior 3D hollow heterojunctions, thus providing a universal strategy for the materials-by-design of high-performance heterojunctions.

9.
Mater Horiz ; 11(7): 1710-1718, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38275080

ABSTRACT

Among the two-dimensional (2D) Bi2O2X (X = S, Se, and Te) series, Bi2O2Te has the smallest effective mass and the highest carrier mobility. However, Bi2O2Te has rarely been investigated, most likely due to the lack of feasible methods to synthesize 2D Bi2O2Te. Herein, 2D Bi2O2Te nanosheets are successfully synthesized by low-temperature oxidation of Bi2Te3 nanosheets synthesized using a solvothermal method. The performance of a quasi-solid-state photoelectrochemical-type (PEC-type) photodetector based on 2D Bi2O2Te nanosheets is systematically investigated. Remarkably, the device has a high responsivity of 20.5 mA W-1 (zero bias) and fast rise/fall times of 6/90 ms under 365 nm illumination, which is superior to the majority of PEC-type photodetectors based on bismuth-based compounds. More importantly, due to the strong anisotropy of 2D Bi2O2Te nanosheets, the device achieves a dichroic ratio as high as 52, which belongs to the state-of-the-art polarized photodetectors. Besides, the capacity of 2D Bi2O2Te for high-resolution polarization imaging is demonstrated. This work provides a promising strategy for the synthesis of 2D Bi2O2Te nanosheets to fabricate a high-performance and polarization-sensitive photodetector.

10.
Int. microbiol ; 26(4): 1103-1112, Nov. 2023.
Article in English | IBECS | ID: ibc-227495

ABSTRACT

Background: Jujube is an economically important fruit tree and native to China. Viral disease is a new threat to jujube production, and several new viruses have been identified infecting jujube plants. During our field survey, jujube mosaic disease was widely distributed in Beijing, but the associated causal agents are still unknown. Methods: Small RNA deep sequencing was conducted to identify the candidate viruses associated with jujube mosaic. Further complete genome sequences of the viruses were cloned, and the genomic characterization of each virus was analyzed. The field distribution of these viruses was further explored with PCR/RT-PCR detection of field samples. Results: Mixed infection of four viruses was identified in a plant sample with the symptom of mosaic and leaf twisting, including the previously reported jujube yellow mottle-associated virus (JYMaV), persimmon ampelovirus (PAmpV), a new badnavirus tentatively named jujube-associated badnavirus (JaBV), and a new secovirus tentatively named jujube-associated secovirus (JaSV). PAmpV-jujube was 14,093 nt in length with seven putative open reading frames (ORFs) and shared highest (79.4%) nucleotide (nt) sequence identity with PAmpV PBs3. Recombination analysis showed that PAmpV-jujube was a recombinant originating from plum bark necrosis stem pitting-associated virus isolates nanjing (KC590347) and bark (EF546442). JaBV was 6449 bp in length with conserved genomic organization typical of badnaviruses. The conserved RT and RNAse H region shared highest 67.6% nt sequence identity with jujube mosaic-associated virus, which was below the 80% nt sequence identity value used as the species demarcation threshold in Badnavirus. The genome of JaSV composed of two RNA molecules of 5878 and 3337 nts in length, excluding the polyA tails. Each genome segment contained one large ORF that shared homology and phylogenetic identity with members of the family Secoviridae...(AU)


Subject(s)
Ziziphus , RNA , Genome, Viral , Fruit , Badnavirus , Mosaic Viruses , Microbiology , Microbiological Techniques , Coinfection
11.
Sports Med Arthrosc Rev ; 31(2): 49-59, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37418174

ABSTRACT

The triangular fibrocartilage complex (TFCC) is essential for maintaining wrist stability. Injury-caused pain is the primary cause of ulnar wrist pain. The TFCC injury refractory to conservative treatment requires further surgical treatment, and because Palmer type IB tears belong to peripheral injuries due to their proximity to the blood supply area, arthroscopic suture repair has become the preferred surgical method for TFCC injury repair, exhibiting strong healing ability. This study reviewed the anatomy of TFCC, injury classification, and advances in arthroscopic suturing for treating Palmer type IB.


Subject(s)
Triangular Fibrocartilage , Wrist Injuries , Humans , Triangular Fibrocartilage/surgery , Triangular Fibrocartilage/injuries , Arthroscopy/methods , Wrist , Wrist Injuries/surgery , Wrist Joint/surgery , Pain
12.
Int Microbiol ; 26(4): 1103-1112, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37118189

ABSTRACT

BACKGROUND: Jujube is an economically important fruit tree and native to China. Viral disease is a new threat to jujube production, and several new viruses have been identified infecting jujube plants. During our field survey, jujube mosaic disease was widely distributed in Beijing, but the associated causal agents are still unknown. METHODS: Small RNA deep sequencing was conducted to identify the candidate viruses associated with jujube mosaic. Further complete genome sequences of the viruses were cloned, and the genomic characterization of each virus was analyzed. The field distribution of these viruses was further explored with PCR/RT-PCR detection of field samples. RESULTS: Mixed infection of four viruses was identified in a plant sample with the symptom of mosaic and leaf twisting, including the previously reported jujube yellow mottle-associated virus (JYMaV), persimmon ampelovirus (PAmpV), a new badnavirus tentatively named jujube-associated badnavirus (JaBV), and a new secovirus tentatively named jujube-associated secovirus (JaSV). PAmpV-jujube was 14,093 nt in length with seven putative open reading frames (ORFs) and shared highest (79.4%) nucleotide (nt) sequence identity with PAmpV PBs3. Recombination analysis showed that PAmpV-jujube was a recombinant originating from plum bark necrosis stem pitting-associated virus isolates nanjing (KC590347) and bark (EF546442). JaBV was 6449 bp in length with conserved genomic organization typical of badnaviruses. The conserved RT and RNAse H region shared highest 67.6% nt sequence identity with jujube mosaic-associated virus, which was below the 80% nt sequence identity value used as the species demarcation threshold in Badnavirus. The genome of JaSV composed of two RNA molecules of 5878 and 3337 nts in length, excluding the polyA tails. Each genome segment contained one large ORF that shared homology and phylogenetic identity with members of the family Secoviridae. Field survey showed JYMaV and JaBV were widely distributed in jujube trees in Beijing. CONCLUSION: Two new viruses were identified from jujube plants, and mixed infections of JYMaV and JaBV were common in jujube in Beijing.


Subject(s)
Badnavirus , Coinfection , Ziziphus , Phylogeny , Ziziphus/genetics , Coinfection/genetics , Fruit , Genome, Viral , Badnavirus/genetics , RNA
13.
ACS Appl Mater Interfaces ; 15(10): 12924-12935, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36854656

ABSTRACT

The construction of heterojunction photocatalysts is an effective method to improve photocatalytic efficiency since the potential gradient and built-in electron field established at the junction could enhance the efficiency of charge separation and interfacial charge transfer. Nevertheless, heterojunction photocatalysts with strong built-in electron fields remain difficult to build since the two adjacent constitutes must be satisfied with an appropriate band alignment, redox potential, and carrier concentration gradient. Here, an efficient charge transfer-induced doping strategy is proposed to enhance the heterojunction built-in electron field for stable and efficient photocatalytic performance. Carrier transfer tests show that the rectification ratio of the n-TiO2-X/n-BiOI heterojunction is significantly enhanced after being coated with graphene oxide (GO). Consequently, both the hydrogen production and photodegradation performance of the GO composite heterojunction are considerably enhanced compared with pure TiO2-X, BiOI, and n-TiO2-X/n-BiOI. This work provides a facile method to prepare heterojunction photocatalysts with a high catalytic activity.

14.
Nanotechnology ; 33(24)2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35240594

ABSTRACT

A novel CaIn2S4with three-dimensional octahedral nano-blocks (ONBs) are successfully synthesized on fluorine-doped tin oxide (FTO) substrate by a simple hydrothermal method. The CaIn2S4ONBs are uniform grown and scattered on the whole FTO substrate with high regular and symmetric morphology as well as average diagonal length of about 600 nm. Based on the as-synthesized CaIn2S4ONBs, a photodetector (PD) is fabricated. Satisfyingly, it is found that the CaIn2S4ONBs PD achieves a broad-band response ranging from ultraviolet (UV) to visible ( vis) light at zero bias voltage. It is also significant that the CaIn2S4ONBs PD enables a fast response, in which the rise time and decay time are less than 0.15 and 0.2 s, respectively. Furthermore, the morphological evolution of the CaIn2S4ONBs and plausible UV/vis detection mechanism of the CaIn2S4ONBs PD are discussed.

15.
Nanomaterials (Basel) ; 11(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34835703

ABSTRACT

The photocatalysis technique has been proven to be a promising method to solve environmental pollution in situations of energy shortage, and has been intensively investigated in the field of pollutant degradation. In this work, a band structure-controlled solid solution of BiOBrXI1-X (x = 0.00, 0.05, 0.10, 0.15, 0.20, 1.00) with highly efficient light-driven photocatalytic activities was successfully synthesized via simple solvothermal methods. The phase composition, crystal structure, morphology, internal molecular vibration, optical properties, and energy band structure were characterized and analyzed by XRD, SEM, HRTEM, XPS, Raman, and UV Vis DRS. To evaluate the photocatalytic activity of BiOBrXI1-X, rhodamine B was selected as an organic pollutant. In particular, BiOBr0.15I0.85 displayed significantly enhanced photocatalytic activity by virtue of modulating the energy band position, optimizing redox potentials, and accelerating carrier separation. Moreover, the enhancement mechanism was elucidated on the basis of band structure engineering, which provides ideas for the design of highly active photocatalysts for practical application in the fields of environmental issues and energy conservation.

16.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34696351

ABSTRACT

The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.


Subject(s)
HIV-1/genetics , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Zinc/metabolism , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Amino Acid Sequence , Capsid/metabolism , Capsid Proteins/genetics , Capsid Proteins/metabolism , Humans , Molecular Conformation , Nucleocapsid Proteins/chemistry , Protein Binding , Zinc/chemistry , Zinc Fingers , gag Gene Products, Human Immunodeficiency Virus/chemistry
17.
J Int Med Res ; 49(9): 3000605211042981, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34551615

ABSTRACT

OBJECTIVE: To explore the effects of continuous renal replacement therapy (CRRT) on renal function and toxin clearance in patients with sepsis and concurrent acute kidney injury (AKI). METHOD: A retrospective analysis was performed using the medical records of 115 patients with sepsis and AKI. Among them, 60 patients received routine treatment (group A) and 55 patients received CRRT plus routine treatment (group B). RESULT: After treatment, the clearance rates of serum creatinine, lactic acid, and urea nitrogen were significantly lower in group A than in group B. The decrease in high-sensitivity C-reactive protein and tumor necrosis factor-α levels after treatment was significantly higher in group B than in group A. For the Acute Physiology Chronic Health Evaluation (APACHE) II and Sequential Organ Failure Assessment (SOFA) scores from the two groups, the scores were significantly lower in group B than in group A. The mortality rate within 28 days was significantly higher in group A than in group B. CONCLUSION: CRRT can effectively improve the condition of patients with sepsis and AKI, promote elimination of toxins (serum creatinine, lactic acid, and urea nitrogen) from the body, and reduce the mortality rate.


Subject(s)
Acute Kidney Injury , Continuous Renal Replacement Therapy , Sepsis , Acute Kidney Injury/therapy , Case-Control Studies , Humans , Intensive Care Units , Kidney/physiology , Prognosis , Renal Replacement Therapy , Retrospective Studies , Sepsis/therapy
18.
Nanotechnology ; 32(43)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34284363

ABSTRACT

Bismuth telluride (Bi2Te3), as an emerging two-dimensional (2D) material, has attracted extensive attention from scientific researchers due to its excellent optoelectronic, thermoelectric properties and topological structure. However, the application research of Bi2Te3mainly focuses on thermoelectric devices, while the research on optoelectronic devices is scarce. In this work, the morphology evolution and growth mechanism of 2D Bi2Te3nanosheets with a thickness of 12 ± 3 nm were systematically studied by solvothermal method. Then, the Bi2Te3nanosheets were annealed at 350 °C for 1 h and applied to self-powered photoelectrochemical-type broadband photodetectors. Compared with the as-synthesized Bi2Te3photodetector, the photocurrent of the photodetector based on the annealed Bi2Te3is significantly enhanced, especially enhanced by 18.3 times under near-infrared light illumination. Furthermore, the performance of annealed Bi2Te3photodetector was systematically studied. The research results show that the photodetector not only has a broadband response from ultraviolet to near-infrared (365-850 nm) under zero bias voltage, but also obtains the highest responsivity of 6.6 mA W-1under green light with an incident power of 10 mW cm-2. The corresponding rise time and decay time are 17 ms and 20 ms, respectively. These findings indicate that annealed Bi2Te3nanosheets have great potential to be used as self-powered high-speed broadband photodetectors with high responsivity.

19.
Nanomaterials (Basel) ; 11(2)2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33670212

ABSTRACT

Recently, different kinds of energy band structures have been utilized to improve the photoelectric properties of zinc oxide (ZnO). In this work, ZnO nanorods were prepared by the hydrothermal method and then decorated with silver sulfide (Ag2S)/zinc sulfide (ZnS) via two-step successive ionic layer adsorption and reaction method. The photoelectric properties of nanocomposites are investigated. The results show that ZnO decorated with Ag2S/ZnS can improve the photocurrent of photodetectors from 0.34 to 0.56 A at bias of 9 V. With the immersion time increasing from 15 to 60 minutes, the photocurrent of photodetectors increases by 0.22 A. The holes in the valence band of ZnO can be transferred to the valence band of ZnS and Ag2S, which promotes the separation and suppresses the recombination of hole-electron pairs generated in ZnO. Moreover, electrons excited by ultraviolet (UV) light in Ag2S can also be injected into the conduction band of ZnO, which causes the photocurrent to increase more than the ZnO photodetector.

SELECTION OF CITATIONS
SEARCH DETAIL
...