Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(6): 8093-8104, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36727950

ABSTRACT

In order to efficiently exploit solar-thermal energy, it is essential to develop form-stable phase-change material (PCM) composites simultaneously with superior solar-thermal storage efficiency, excellent flame retardancy, and improved thermal conductivity. Herein, phytic acid (PA)-modified, zinc oxide-deposited, and surface-carbonized delignified woods (PZCDWs) were constructed by alkaline boiling, PA modification, ZnO deposition, and surface carbonization. Then, novel form-stable PCMs (PZPCMs) with superior solar-thermal storage efficiency, excellent flame retardancy, and improved thermal conductivity were fabricated by impregnating n-docosane into PZCDWs under vacuum. The PZCDW aerogels can well support the n-docosane and overcome liquid leakage owing to their superior surface tension and strong capillary force. Differential scanning calorimetry results showed that PZPCMs possessed superior n-docosane encapsulation yield and high phase-change enthalpy (185.2-213.1 J/g). Decorating delignified wood by surface carbonization and ZnO deposition significantly improved the solar-thermal conversion efficiency (up to 86.2%) and thermal conductivity (193.3% increased) of PCM composites. Furthermore, with the introduction of PA into PZPCMs, the peak heat release rate and total heat release of the PCM composites decreased considerably, indicating the enhanced flame retardancy of PZPCMs. In conclusion, the novel renewable wood-based PCM composites demonstrate promising potential in solar energy harnessing and thermal modulation technologies.

2.
ACS Appl Mater Interfaces ; 14(13): 15225-15234, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35321540

ABSTRACT

The exploitation of from-stable phase change materials (PCMs) with superior energy storage capacity and excellent solar-thermal conversion performance is crucial for the efficient exploitation of solar energy. Herein, 2D-layered polymerized dopamine-decorated Ti3C2Tx MXene nanosheets (P-MXene) with superior photothermal effects and excellent oxidation stability were synthesized from Ti3AlC2 particles by the selective etching and self-polymerization of dopamine. Then, novel biomass-derived PCM composites, eMPCMs, were fabricated by impregnating erythritol into P-MXene/cellulose nanofiber (CNF) hybrid aerogels. The porous and interconnected 3D aerogels adequately support erythritol and resist liquid leakage during thermal storage. Differential scanning calorimetry (DSC) results showed that the eMPCMs based on P-MXene/CNF aerogels exhibited an extremely high thermal storage density (325.4-330.6 J/g) and excellent PCM loading capacity (up to 1929%). The introduction of P-MXene nanosheets into eMPCMs significantly increased the solar-thermal conversion and storage efficiency, solar-thermal-electricity conversion capacity, and thermal conductivity of the synthesized PCM composites. Moreover, the P-MXene/CNF hybrid aerogel-based PCM composites possessed excellent long-term thermal reliability and thermostability. Hence, the synthesized eMPCMs reveal tremendous potential for efficient solar-thermal storage fields.

SELECTION OF CITATIONS
SEARCH DETAIL
...