Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Glob Chang Biol ; 30(1): e17151, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38273511

ABSTRACT

Observations of the annual cycle of atmospheric CO2 in high northern latitudes provide evidence for an increase in terrestrial metabolism in Arctic tundra and boreal forest ecosystems. However, the mechanisms driving these changes are not yet fully understood. One proposed hypothesis is that ecological change from disturbance, such as wildfire, could increase the magnitude and change the phase of net ecosystem exchange through shifts in plant community composition. Yet, little quantitative work has evaluated this potential mechanism at a regional scale. Here we investigate how fire disturbance influences landscape-level patterns of photosynthesis across western boreal North America. We use Alaska and Canadian large fire databases to identify the perimeters of wildfires, a Landsat-derived land cover time series to characterize plant functional types (PFTs), and solar-induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2) as a proxy for photosynthesis. We analyze these datasets to characterize post-fire changes in plant succession and photosynthetic activity using a space-for-time approach. We find that increases in herbaceous and sparse vegetation, shrub, and deciduous broadleaf forest PFTs during mid-succession yield enhancements in SIF by 8-40% during June and July for 2- to 59-year stands relative to pre-fire controls. From the analysis of post-fire land cover changes within individual ecoregions and modeling, we identify two mechanisms by which fires contribute to long-term trends in SIF. First, increases in annual burning are shifting the stand age distribution, leading to increases in the abundance of shrubs and deciduous broadleaf forests that have considerably higher SIF during early- and mid-summer. Second, fire appears to facilitate a long-term shift from evergreen conifer to broadleaf deciduous forest in the Boreal Plain ecoregion. These findings suggest that increasing fire can contribute substantially to positive trends in seasonal CO2 exchange without a close coupling to long-term increases in carbon storage.


Subject(s)
Fires , Wildfires , Ecosystem , Taiga , Canada , Carbon Dioxide/metabolism , North America , Forests , Photosynthesis , Seasons , Carbon
2.
Sci Data ; 10(1): 879, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38062043

ABSTRACT

State-of-the-art cloud computing platforms such as Google Earth Engine (GEE) enable regional-to-global land cover and land cover change mapping with machine learning algorithms. However, collection of high-quality training data, which is necessary for accurate land cover mapping, remains costly and labor-intensive. To address this need, we created a global database of nearly 2 million training units spanning the period from 1984 to 2020 for seven primary and nine secondary land cover classes. Our training data collection approach leveraged GEE and machine learning algorithms to ensure data quality and biogeographic representation. We sampled the spectral-temporal feature space from Landsat imagery to efficiently allocate training data across global ecoregions and incorporated publicly available and collaborator-provided datasets to our database. To reflect the underlying regional class distribution and post-disturbance landscapes, we strategically augmented the database. We used a machine learning-based cross-validation procedure to remove potentially mis-labeled training units. Our training database is relevant for a wide array of studies such as land cover change, agriculture, forestry, hydrology, urban development, among many others.

3.
Proc Natl Acad Sci U S A ; 120(15): e2201954120, 2023 04 11.
Article in English | MEDLINE | ID: mdl-37011220

ABSTRACT

Wildfire modifies the short- and long-term exchange of carbon between terrestrial ecosystems and the atmosphere, with impacts on ecosystem services such as carbon uptake. Dry western US forests historically experienced low-intensity, frequent fires, with patches across the landscape occupying different points in the fire-recovery trajectory. Contemporary perturbations, such as recent severe fires in California, could shift the historic stand-age distribution and impact the legacy of carbon uptake on the landscape. Here, we combine flux measurements of gross primary production (GPP) and chronosequence analysis using satellite remote sensing to investigate how the last century of fires in California impacted the dynamics of ecosystem carbon uptake on the fire-affected landscape. A GPP recovery trajectory curve of more than five thousand fires in forest ecosystems since 1919 indicated that fire reduced GPP by [Formula: see text] g C m[Formula: see text] y[Formula: see text]([Formula: see text]) in the first year after fire, with average recovery to prefire conditions after [Formula: see text] y. The largest fires in forested ecosystems reduced GPP by [Formula: see text] g C m[Formula: see text] y[Formula: see text] (n = 401) and took more than two decades to recover. Recent increases in fire severity and recovery time have led to nearly [Formula: see text] MMT CO[Formula: see text] (3-y rolling mean) in cumulative forgone carbon uptake due to the legacy of fires on the landscape, complicating the challenge of maintaining California's natural and working lands as a net carbon sink. Understanding these changes is paramount to weighing the costs and benefits associated with fuels management and ecosystem management for climate change mitigation.


Subject(s)
Fires , Wildfires , Ecosystem , Forests , California , Carbon
4.
Glob Chang Biol ; 28(22): 6789-6806, 2022 11.
Article in English | MEDLINE | ID: mdl-36093912

ABSTRACT

Nature-based climate solutions are a vital component of many climate mitigation strategies, including California's, which aims to achieve carbon neutrality by 2045. Most carbon offsets in California's cap-and-trade program come from improved forest management (IFM) projects. Since 2012, various landowners have set up IFM projects following the California Air Resources Board's IFM protocol. As many of these projects approach their 10th year, we now have the opportunity to assess their effectiveness, identify best practices, and suggest improvements toward future protocol revisions. In this study, we used remote sensing-based datasets to evaluate the carbon trends and harvest histories of 37 IFM projects in California. Despite some current limitations and biases, these datasets can be used to quantify carbon accumulation and harvest rates in offset project lands relative to nearby similar "control" lands before and after the projects began. Five lines of evidence suggest that the carbon accumulated in offset projects to date has generally not been additional to what might have otherwise occurred: (1) most forests in northwestern California have been accumulating carbon since at least the mid-1980s and continue to accumulate carbon, whether enrolled in offset projects or not; (2) harvest rates were high in large timber company project lands before IFM initiation, suggesting they are earning carbon credits for forests in recovery; (3) projects are often located on lands with higher densities of low-timber-value species; (4) carbon accumulation rates have not yet increased on lands that enroll as offset projects, relative to their pre-enrollment levels; and (5) harvest rates have not decreased on most project lands since offset project initiation. These patterns suggest that the current protocol should be improved to robustly measure and reward additionality. In general, our framework of geospatial analyses offers an important and independent means to evaluate the effectiveness of the carbon offsets program, especially as these data products continue improving and as offsets receive attention as a climate mitigation strategy.


Subject(s)
Carbon , Forestry , California , Climate , Climate Change , Conservation of Natural Resources , Forests , Remote Sensing Technology
5.
J Environ Manage ; 302(Pt B): 114083, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34800763

ABSTRACT

An essential component of sustainable forest management is accurate monitoring of forest activities. Although monitoring efforts have generally increased for many forests throughout the world, in practice, effective monitoring is complex. Determining the magnitude and location of progress towards sustainability targets can be challenging due to diverse forest operations across multiple jurisdictions, the lack of data standardization, and discrepancies between field inspections and remotely-sensed records. In this work, we used California as a multijurisdictional case study to explore these problems and develop an approach that broadly informs forest monitoring strategies. The State of California recently entered into a shared stewardship agreement with the US Forest Service (USFS) and set a goal to jointly treat one million acres of forest and rangeland annually by 2025. Currently, however, federal and state forest management datasets are disjoint. This work addresses three barriers stymying the use of federal and state archival records to assess management goals. These barriers are: 1) current databases from different jurisdictions have not been combined due to their distinct data collection processes and internal structures; 2) datasets have not been comprehensively analyzed, despite the need to understand the extent of previous treatments as well as the rate of current activity; and 3) the spatial accuracy of archival datasets has not been evaluated against remotely-sensed data. To reduce these barriers, we first aggregated existing archival forest management records between 1984 and 2019 from the USFS' Forest Activity Tracking System (FACTS) and the California Department of Forestry and Fire Protection (CAL FIRE) using a qualitative scalar of treatment intensity. Combined FACTS and CAL FIRE completed footprint acres - defined as unique areas of land where a treatment was completed at any time since 1984 - have decreased since a peak in 2008. At most, 300,000 footprint acres are completed each year, 30% of the million-acre goal. Prescribed fires - defined as direct burning operations - have risen over time, according to the FACTS hazardous fuels dataset but prescribed fire records in CAL FIRE's dataset have rapidly increased since 2016. We also refined the spatial and temporal detail of the aggregated management record using the Continuous Change Detection and Classification algorithm on satellite remote sensing data to produce a state-wide time series map of harvest disturbances. A comparison of the algorithm's refined data to the archival record potentially suggests over-reporting in both FACTS and CAL FIRE's archival datasets. Our integrated dataset provides a better assessment of current treatments and the path towards the 1-million-acre a year goal. The refined dataset leverages the strengths of complementary, albeit imperfect, monitoring strategies from archives and remotely-sensed detection.


Subject(s)
Forestry , California
6.
Carbon Balance Manag ; 16(1): 4, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33515367

ABSTRACT

BACKGROUND: Networks of tower-based CO2 mole fraction sensors have been deployed by various groups in and around cities across the world to quantify anthropogenic CO2 emissions from metropolitan areas. A critical aspect in these approaches is the separation of atmospheric signatures from distant sources and sinks (i.e., the background) from local emissions and biogenic fluxes. We examined CO2 enhancements compared to forested and agricultural background towers in Indianapolis, Indiana, USA, as a function of season and compared them to modeled results, as a part of the Indianapolis Flux (INFLUX) project. RESULTS: At the INFLUX urban tower sites, daytime growing season enhancement on a monthly timescale was up to 4.3-6.5 ppm, 2.6 times as large as those in the dormant season, on average. The enhancement differed significantly depending on choice of background and time of year, being 2.8 ppm higher in June and 1.8 ppm lower in August using a forested background tower compared to an agricultural background tower. A prediction based on land cover and observed CO2 fluxes showed that differences in phenology and drawdown intensities drove measured differences in enhancements. Forward modelled CO2 enhancements using fossil fuel and biogenic fluxes indicated growing season model-data mismatch of 1.1 ± 1.7 ppm for the agricultural background and 2.1 ± 0.5 ppm for the forested background, corresponding to 25-29% of the modelled CO2 enhancements. The model-data total CO2 mismatch during the dormant season was low, - 0.1 ± 0.5 ppm. CONCLUSIONS: Because growing season biogenic fluxes at the background towers are large, the urban enhancements must be disentangled from the biogenic signal, and growing season increases in CO2 enhancement could be misinterpreted as increased anthropogenic fluxes if the background ecosystem CO2 drawdown is not considered. The magnitude and timing of enhancements depend on the land cover type and net fluxes surrounding each background tower, so a simple box model is not appropriate for interpretation of these data. Quantification of the seasonality and magnitude of the biological fluxes in the study region using high-resolution and detailed biogenic models is necessary for the interpretation of tower-based urban CO2 networks for cities with significant vegetation.

7.
Environ Sci Technol ; 54(16): 10237-10245, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32806908

ABSTRACT

Global fossil fuel carbon dioxide (FFCO2) emissions will be dictated to a great degree by the trajectory of emissions from urban areas. Conventional methods to quantify urban FFCO2 emissions typically rely on self-reported economic/energy activity data transformed into emissions via standard emission factors. However, uncertainties in these traditional methods pose a roadblock to implementation of effective mitigation strategies, independently monitor long-term trends, and assess policy outcomes. Here, we demonstrate the applicability of the integration of a dense network of greenhouse gas sensors with a science-driven building and street-scale FFCO2 emissions estimation through the atmospheric CO2 inversion process. Whole-city FFCO2 emissions agree within 3% annually. Current self-reported inventory emissions for the city of Indianapolis are 35% lower than our optimal estimate, with significant differences across activity sectors. Differences remain, however, regarding the spatial distribution of sectoral FFCO2 emissions, underconstrained despite the inclusion of coemitted species information.


Subject(s)
Carbon Dioxide , Greenhouse Gases , Carbon Dioxide/analysis , Cities , Fossil Fuels
8.
Am J Public Health ; : e1-e8, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32437273

ABSTRACT

Objectives. To examine the relationships among environmental characteristics, temperature, and health outcomes during heat advisories at the geographic scale of street segments.Methods. We combined multiple data sets from Boston, Massachusetts, including remotely sensed measures of temperature and associated environmental characteristics (e.g., canopy cover), 911 dispatches for medical emergencies, daily weather conditions, and demographic and physical context from the American Community Survey and City of Boston Property Assessments. We used multilevel models to analyze the distribution of land surface temperature and elevated vulnerability during heat advisories across streets and neighborhoods.Results. A substantial proportion of variation in land surface temperature existed between streets within census tracts (38%), explained by canopy, impervious surface, and albedo. Streets with higher land surface temperature had a greater likelihood of medical emergencies during heat advisories relative to the frequency of medical emergencies during non-heat advisory periods. There was no independent effect of the average land surface temperature of the census tract.Conclusions. The relationships among environmental characteristics, temperature, and health outcomes operate at the spatial scale of the street segment, calling for more geographically precise analysis and intervention. (Am J Public Health. Published online ahead of print May 21, 2020: e1-e8. doi:10.2105/AJPH.2020.305636).

9.
Glob Chang Biol ; 26(2): 807-822, 2020 02.
Article in English | MEDLINE | ID: mdl-31437337

ABSTRACT

A multitude of disturbance agents, such as wildfires, land use, and climate-driven expansion of woody shrubs, is transforming the distribution of plant functional types across Arctic-Boreal ecosystems, which has significant implications for interactions and feedbacks between terrestrial ecosystems and climate in the northern high-latitude. However, because the spatial resolution of existing land cover datasets is too coarse, large-scale land cover changes in the Arctic-Boreal region (ABR) have been poorly characterized. Here, we use 31 years (1984-2014) of moderate spatial resolution (30 m) satellite imagery over a region spanning 4.7 × 106  km2 in Alaska and northwestern Canada to characterize regional-scale ABR land cover changes. We find that 13.6 ± 1.3% of the domain has changed, primarily via two major modes of transformation: (a) simultaneous disturbance-driven decreases in Evergreen Forest area (-14.7 ± 3.0% relative to 1984) and increases in Deciduous Forest area (+14.8 ± 5.2%) in the Boreal biome; and (b) climate-driven expansion of Herbaceous and Shrub vegetation (+7.4 ± 2.0%) in the Arctic biome. By using time series of 30 m imagery, we characterize dynamics in forest and shrub cover occurring at relatively short spatial scales (hundreds of meters) due to fires, harvest, and climate-induced growth that are not observable in coarse spatial resolution (e.g., 500 m or greater pixel size) imagery. Wildfires caused most of Evergreen Forest Loss and Evergreen Forest Gain and substantial areas of Deciduous Forest Gain. Extensive shifts in the distribution of plant functional types at multiple spatial scales are consistent with observations of increased atmospheric CO2 seasonality and ecosystem productivity at northern high-latitudes and signal continental-scale shifts in the structure and function of northern high-latitude ecosystems in response to climate change.


Subject(s)
Climate Change , Ecosystem , Alaska , Arctic Regions , Canada , North America
10.
Proc Natl Acad Sci U S A ; 115(29): 7491-7496, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967154

ABSTRACT

With the pending withdrawal of the United States from the Paris Climate Accord, cities are now leading US actions toward reducing greenhouse gas emissions. Implementing effective mitigation strategies requires the ability to measure and track emissions over time and at various scales. We report CO2 emissions in the Boston, MA, urban region from September 2013 to December 2014 based on atmospheric observations in an inverse model framework. Continuous atmospheric measurements of CO2 from five sites in and around Boston were combined with a high-resolution bottom-up CO2 emission inventory and a Lagrangian particle dispersion model to determine regional emissions. Our model-measurement framework incorporates emissions estimates from submodels for both anthropogenic and biological CO2 fluxes, and development of a CO2 concentration curtain at the boundary of the study region based on a combination of tower measurements and modeled vertical concentration gradients. We demonstrate that an emission inventory with high spatial and temporal resolution and the inclusion of urban biological fluxes are both essential to accurately modeling annual CO2 fluxes using surface measurement networks. We calculated annual average emissions in the Boston region of 0.92 kg C·m-2·y-1 (95% confidence interval: 0.79 to 1.06), which is 14% higher than the Anthropogenic Carbon Emissions System inventory. Based on the capability of the model-measurement approach demonstrated here, our framework should be able to detect changes in CO2 emissions of greater than 18%, providing stakeholders with critical information to assess mitigation efforts in Boston and surrounding areas.


Subject(s)
Atmosphere/analysis , Carbon Dioxide/analysis , Greenhouse Gases/analysis , Models, Theoretical , Urban Renewal , Boston
11.
Sci Total Environ ; 592: 366-372, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28324854

ABSTRACT

Many ecosystem models incorrectly treat urban areas as devoid of vegetation and biogenic carbon (C) fluxes. We sought to improve estimates of urban biomass and biogenic C fluxes using existing, nationally available data products. We characterized biogenic influence on urban C cycling throughout Massachusetts, USA using an ecosystem model that integrates improved representation of urban vegetation, growing conditions associated with urban heat island (UHI), and altered urban phenology. Boston's biomass density is 1/4 that of rural forests, however 87% of Massachusetts' urban landscape is vegetated. Model results suggest that, kilogram-for-kilogram, urban vegetation cycles C twice as fast as rural forests. Urban vegetation releases (RE) and absorbs (GEE) the equivalent of 11 and 14%, respectively, of anthropogenic emissions in the most urban portions of the state. While urban vegetation in Massachusetts fully sequesters anthropogenic emissions from smaller cities in the region, Boston's UHI reduces annual C storage by >20% such that vegetation offsets only 2% of anthropogenic emissions. Asynchrony between temporal patterns of biogenic and anthropogenic C fluxes further constrains the emissions mitigation potential of urban vegetation. However, neglecting to account for biogenic C fluxes in cities can impair efforts to accurately monitor, report, verify, and reduce anthropogenic emissions.


Subject(s)
Carbon/analysis , Cities , Forests , Biomass , Boston , Carbon Cycle , Massachusetts
12.
Proc Natl Acad Sci U S A ; 113(20): E2812-21, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27140640

ABSTRACT

Predicting whether and how populations will adapt to rapid climate change is a critical goal for evolutionary biology. To examine the genetic basis of fitness and predict adaptive evolution in novel climates with seasonal variation, we grew a diverse panel of the annual plant Arabidopsis thaliana (multiparent advanced generation intercross lines) in controlled conditions simulating four climates: a present-day reference climate, an increased-temperature climate, a winter-warming only climate, and a poleward-migration climate with increased photoperiod amplitude. In each climate, four successive seasonal cohorts experienced dynamic daily temperature and photoperiod variation over a year. We measured 12 traits and developed a genomic prediction model for fitness evolution in each seasonal environment. This model was used to simulate evolutionary trajectories of the base population over 50 y in each climate, as well as 100-y scenarios of gradual climate change following adaptation to a reference climate. Patterns of plastic and evolutionary fitness response varied across seasons and climates. The increased-temperature climate promoted genetic divergence of subpopulations across seasons, whereas in the winter-warming and poleward-migration climates, seasonal genetic differentiation was reduced. In silico "resurrection experiments" showed limited evolutionary rescue compared with the plastic response of fitness to seasonal climate change. The genetic basis of adaptation and, consequently, the dynamics of evolutionary change differed qualitatively among scenarios. Populations with fewer founding genotypes and populations with genetic diversity reduced by prior selection adapted less well to novel conditions, demonstrating that adaptation to rapid climate change requires the maintenance of sufficient standing variation.


Subject(s)
Arabidopsis/genetics , Seasons , Acclimatization , Adaptation, Physiological/genetics , Climate , Climate Change
SELECTION OF CITATIONS
SEARCH DETAIL
...