Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Publication year range
1.
Dalton Trans ; 53(2): 484-492, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38084054

ABSTRACT

The energy loss (Eloss) caused by inefficient charge transfer and large energy level offset at the buried interface can easily restrict the performance of p-i-n perovskite solar cells (PVSCs). In this study, the utilization of poly-TPD and P3CT-N as a dual-hole transporting layer (HTLs) was implemented in a sequential manner. This approach aimed to improve the charge transfer efficiency of the HTL and mitigate charge recombination at the interface between the HTL and PVK. The results showed that this strategy also could achieve more suitable energy levels, improve the quality of the perovskite film layer, and ultimately enhance the device's stability. IPVSCs employing the dual-HTLs approach exhibited the highest power conversion efficiency of 19.85%, and the open-circuit voltage increased to 1.09 V from 1.00 V. This study offers a straightforward and efficient approach to boost the device performance by minimizing Eloss and reducing the buried interfacial defects. The findings underscore the potential of employing a dual-HTL strategy as a promising pathway for further advancements in PVSCs.

2.
Small ; 18(21): e2106632, 2022 May.
Article in English | MEDLINE | ID: mdl-35460192

ABSTRACT

For achieving high-performance p-i-n perovskite solar cells (PSCs), hole transporting materials (HTMs) are critical to device functionality and represent a major bottleneck to further enhancing device stability and efficiency in the inverted devices. Three dopant-free polymeric HTMs are developed based on different linkage sites of triphenylamine and phenylenevinylene repeating units in their main backbone structures. The backbone curvatures of the polymeric HTMs affect the morphology and hole mobility of the polymers and further change the crystallinity of perovskite films. By using PTA-mPV with moderate molecular curvature, p-i-n PSCs with high efficiency of 19.5% and long-term stability can be achieved. The better performance is attributed to the more effective hole extraction ability, higher charge-carrier mobility, and lower interfacial charge recombination. Furthermore, these three polymeric HTMs are synthesized without any noble metal catalyst, and show great advantages in future application owing to the low-cost.

3.
J Colloid Interface Sci ; 607(Pt 2): 1083-1090, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34583030

ABSTRACT

Selective ultraviolet-harvesting transparent perovskite solar cells (T-PSCs) have attracted great interest because of their high transmittance and unique photovoltaic properties, especially in the fields of smart windows for power generation and building glass. However, owing to the unsatisfactory solubility of PbCl2 in most conventional solvents, preparing transparent methylammonium lead chloride (MAPbCl3) films with high quality and sufficient thickness by conventional methods poses a substantial challenge for their application deployment in T-PSCs. In this work, two novel strategies based on an ion-exchange procedure for controlling phase transition engineering (CPTE) are proposed. For CPTE-2, an optimized cubic phase MAPbCl3 film with a large grain size and high full coverage is prepared by transforming the tetragonal phase MAPbI3 precursor into the cubic phase MAPbCl3. Establishing relevant models based on crystal parameters investigates the formation mechanism of this high-quality MAPbCl3 film. Accordingly, the resultant T-PSCs exhibit remarkable film quality and micron-sized grains and reach an optimum efficiency of 0.33% (JSC = 0.66 mA cm-2, VOC = 1.14 V, and FF = 43.72%).

4.
Research (Wash D C) ; 2021: 9797053, 2021.
Article in English | MEDLINE | ID: mdl-34386771

ABSTRACT

Halide perovskites with low-dimensionalities (2D or quasi-2D) have demonstrated outstanding stabilities compared to their 3D counterparts. Nevertheless, poor charge-transporting abilities of organic components in 2D perovskites lead to relatively low power conversion efficiency (PCE) and thus limit their applications in photovoltaics. Here, we report a novel hole-transporting low-dimensional (HT2D) perovskite, which can form a hole-transporting channel on the top surface of 3D perovskite due to self-assembly effects of metal halide frameworks. This HT2D perovskite can significantly reduce interface trap densities and enhance hole-extracting abilities of a heterojunction region between the 3D perovskite and hole-transporting layer. Furthermore, the posttreatment by HT2D can also reduce the crystal defects of perovskite and improve film morphology. As a result, perovskite solar cells (PSCs) can effectively suppress nonradiative recombination, leading to an increasement on photovoltage to >1.20 V and thus achieving >20% power conversion efficiency and >500 h continuous illumination stability. This work provides a pathway to overcome charge-transporting limitations in low-dimensional perovskites and delivers significant enhancements on performance of PSCs.

5.
Nat Commun ; 12(1): 3360, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34099690

ABSTRACT

Window glazing plays an essential role to modulate indoor light and heat transmission, which is a prospect to save the energy cost in buildings. The latest photovoltachromic technology has been regarded as one of the most ideal solutions, however, to achieve full-frame size (100% active area) and high-contrast ratio (>30% variable in visible wavelength) for smart window applicability is still a challenge. Here we report a photovoltachromic device combining full-transparent perovskite photovoltaic and ion-gel based electrochromic components in a vertical tandem architecture without any intermediated electrode. Most importantly, by accurately adjusting the halide-exchanging period, this photovoltachromic module can realize a high pristine transmittance up to 76%. Moreover, it possesses excellent colour-rendering index to 96, wide contrast ratio (>30%) on average visible transmittance (400-780 nm), and a self-adaptable transmittance adjustment and control indoor brightness and temperature automatically depending on different solar irradiances.

6.
Adv Sci (Weinh) ; 7(12): 2000480, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32596128

ABSTRACT

Rapid processing technologies of perovskite solar cells (PSCs) offer an exciting approach to raise the rate of production. Herein, a rapid microwave-annealing process (MAP) is reported to replace the traditional hotplate annealing process (HAP) and the processing period of perovskite is reduced to less than 1 min. Benefiting from the penetrability and simultaneity of microwave irradiation, the MAP method can effectively eliminate miscellaneous phases and thus achieve >1 µm large-size crystal grains in perovskite films. These MAP treated perovskite films exhibit pure crystalline phase, long charge-carrier lifetime, and low defect density, which can substantially improve the PSC efficiency without requiring an additional enhancer/passivation layer. The inverted planar PSCs present enhanced power conversion efficiency from 18.33% (HAP) to 21.59% (MAP) and good stability of >1000 h lifetime without encapsulation under ambient conditions. In addition, MAP can be applied to a large-size (10 cm × 10 cm) perovskite film fabrication as well as a broader tolerance in environmental temperature and precursor concentration, making it a reliable method for repeatably practical fabrication of perovskite photovoltaics.

7.
Article in Chinese | MEDLINE | ID: mdl-23213752

ABSTRACT

OBJECTIVE: To provide the clinical anatomic data of the lingual artery with 3D CT reconstruction. METHOD: Ten healthy subjects were recruited. Spiral CT scan ranged from the sternoclavicular joint to the lower edge of the orbit and the data was subjected to three-dimensional reconstruction. The distance from the origin of the lingual artery to the bifurcation of the common carotid artery and tip of the greater horn of hyoid bone were measured respectively and the distance between the midline of the lingual artery and the midline of tongue were also measured. RESULT: The horizontal distance between starting level of lingual artery to the level of the hyoid horn tip was (1.51 +/- 0.35) cm. The horizontal distance between the level of the lingual artery to the carotid bifurcation was (0.95 +/- 0.31) cm. The comparison of the distance from lingual artery 1 cm anterior or posterior to foramen cecum to midline of tongue showed (t = 45.27, P < 0.01) a statistically significant difference. CONCLUSION: The lingual artery could be demonstrated clearly in 3D reconstruction. To ensure the operative safety, the depth of radiofrequency for OSAHS at the tongue base should be limited within 2 centimeters.


Subject(s)
Arteries/anatomy & histology , Carotid Artery, Common/anatomy & histology , Carotid Artery, External/anatomy & histology , Tongue/anatomy & histology , Adult , Aged , Female , Humans , Male , Middle Aged , Tongue/blood supply , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...