Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 173: 108396, 2024 May.
Article in English | MEDLINE | ID: mdl-38574529

ABSTRACT

Acute myeloid leukemia (AML) is an aggressive malignancy characterized by challenges in treatment, including drug resistance and frequent relapse. Recent research highlights the crucial roles of tumor microenvironment (TME) in assisting tumor cell immune escape and promoting tumor aggressiveness. This study delves into the interplay between AML and TME. Through the exploration of potential driver genes, we constructed an AML prognostic index (AMLPI). Cross-platform data and multi-dimensional internal and external validations confirmed that the AMLPI outperforms existing models in terms of areas under the receiver operating characteristic curves, concordance index values, and net benefits. High AMLPIs in AML patients were indicative of unfavorable prognostic outcomes. Immune analyses revealed that the high-AMLPI samples exhibit higher expression of HLA-family genes and immune checkpoint genes (including PD1 and CTLA4), along with lower T cell infiltration and higher macrophage infiltration. Genetic variation analyses revealed that the high-AMLPI samples associate with adverse variation events, including TP53 mutations, secondary NPM1 co-mutations, and copy number deletions. Biological interpretation indicated that ALDH2 and SPATS2L contribute significantly to AML patient survival, and their abnormal expression correlates with DNA methylation at cg12142865 and cg11912272. Drug response analyses revealed that different AMLPI samples tend to have different clinical selections, with low-AMLPI samples being more likely to benefit from immunotherapy. Finally, to facilitate broader access to our findings, a user-friendly and publicly accessible webserver was established and available at http://bioinfor.imu.edu.cn/amlpi. This server provides tools including TME-related AML driver genes mining, AMLPI construction, multi-dimensional validations, AML patients risk assessment, and figures drawing.


Subject(s)
Leukemia, Myeloid, Acute , Nucleophosmin , Humans , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , DNA Methylation , Tumor Microenvironment , Aldehyde Dehydrogenase, Mitochondrial/genetics , Aldehyde Dehydrogenase, Mitochondrial/metabolism
2.
Sensors (Basel) ; 23(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37430737

ABSTRACT

To allieviate the heavy traffic burden over backhaul links and improve the user's quality of service (QoS), edge caching plays an important role in wireless networks. This paper investigated the optimal designs of content placement and transmission in wireless caching networks. The contents to be cached and requested were encoded into individual layers by scalable video coding (SVC), and different sets of layers can provide different viewing qualities to end users. The demanded contents were provided by helpers caching the requested layers, or by the macro-cell base station (MBS) otherwise. In the content placement phase, this work formulated and solved the delay minimization problem. In the content transmission phase, the sum rate optimization problem was established. To effectively solve the nonconvex problem, the methods of semi-definite relaxation (SDR), successive convex approximation (SCA), and arithmetic-geometric mean (AGM) inequality were adopted, after which the original problem was transformed into the convex form. The numerical results show that the transmission delay is reduced by caching contents at helpers. Moreover, the fast convergence of the proposed algorithm for solving the sum rate maximization problem is presented, and the sum rate gain of edge caching is also revealed, as compared to the benchmark scheme without content caching.

3.
Plant Physiol Biochem ; 195: 275-287, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36652849

ABSTRACT

The pericarp of fruit can be differentiated into endocarp, mesocarp, and exocarp. To explore the differences in gene expression and metabolites in different tissues of the pericarp, the fruits of sumac (Toxicodendron vernicifluum) were separated into endocarp and mesocarp-exocarp. The metabolites and transcriptome of exocarp-mesocarp and endocarp of Toxicodendron vernicifluum were analyzed by HPLC-QTOF-MS/MS and RNA sequencing, respectively. A total of 52 phenolic compounds were identified, including 3 phenylpropane derivatives, 10 urushiol compounds and 39 flavonoids. The exocarp-mesocarp contained more urushiol compounds and flavonoid glycosides while the endocarp contained more biflavonoids, such as rhusflavone and dihydromorelloflavone. The characteristic component of endocarp was rhusflavone and the characteristic component of exocarp-mesocarp was urushiol (triene). Most of the genes involved in flavonoid synthesis pathway were upregulated in endocarp compared with exocarp-mesocarp and positively correlated with the content of flavonoids. The candidate genes related to the synthesis of components of flavonoid glycosides and biflavonoids were screened. Metabolomic and transcriptomic analyses provide new insights into the synthesis and distribution of flavonoid glycosides and biflavonoids in the fruits of Toxicodendron vernicifluum.


Subject(s)
Biflavonoids , Rhus , Toxicodendron , Flavonoids/genetics , Flavonoids/metabolism , Toxicodendron/genetics , Toxicodendron/metabolism , Rhus/genetics , Rhus/metabolism , Biflavonoids/genetics , Biflavonoids/metabolism , Glycosylation , Tandem Mass Spectrometry , Gene Expression Profiling , Phenols/metabolism , Transcriptome/genetics , Glycosides/metabolism , Fruit/genetics , Fruit/metabolism
4.
Biomed Rep ; 14(1): 5, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33235720

ABSTRACT

Pulmonary contusion (PC) is very common in blunt chest trauma, and always results in negative pulmonary outcomes, such as pneumonia, acute respiratory distress syndrome (ARDS), respiratory failure or even death. However, there are no effective biomarkers which can be used to predict the outcomes in these patients. The present study aimed to determine the value of interleukin (IL)-17 and IL-22 in predicting the severity and outcomes of PC in trauma patients. All trauma patients admitted to The First Affiliated Hospital of Guangxi Medical University between January 2015 and December 2017, were studied. Patients aged >14 years old with a diagnosis of PC upon their admission to the emergency department were included. Patients with PC were enrolled as the PC group, patients without PC were enrolled as the non-PC group, and healthy individuals were selected as the control group. Clinical information, including sociodemographic parameters, clinical data, biological findings and therapeutic interventions were recorded for all patients who were enrolled. Blood samples were collected and stored according to the established protocols. PC volume was measured by computed tomography and plasma cytokine levels were assayed by ELISA. A total of 151 patients with PC (PC group) and 159 patients without PC (non-PC group) were included in the present study. In addition, 50 healthy individuals were used as the control group. The primary cause of PC was motor vehicle crashes. PC patients had more rib fractures, but similar injury severity scores compared with other patients. More patients received Pleurocan drainage treatment and had pneumonia complications in the PC group compared with the other two groups. PC patients had a high incidence of ARDS and admission to the intensive care unit (ICU). PC patients also experienced longer periods on mechanical ventilation and had longer stays in the ICU and hospital. PC volume was effective in predicting the outcomes of PC patients. IL-22 levels were similar in the PC group and non-PC group. However, IL-17 could be used as a biomarker to predict the severity of PC, and was strongly associated with PC volume. IL-17 was significantly associated with pro-inflammatory complications in PC patients and could be used as a biomarker for predicting in-patient outcomes of patients with PC. In conclusion, IL-17 is a potential biomarker for predicting the severity and outcomes of PC in trauma patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...