Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38790753

ABSTRACT

Achieving effective control over microbial contamination necessitates the precise and concurrent identification of numerous pathogens. As a common bacterium in the environment, Pseudomonas is rich in variety. It not only has pathogenic strains, but also spoilage bacteria that cause food spoilage. In this research, we devised a remarkably sensitive duplex droplet digital PCR (dddPCR) reaction system to simultaneously detect pathogenic Pseudomonas aeruginosa (P. aeruginosa) and spoilage Pseudomonas fragi (P. fragi). By employing comparative genomics, we identified four genes of P. fragi. Through a specific analysis, the RS22680 gene was selected as the detection target for P. fragi, and the lasR gene was chosen for P. aeruginosa, which were applied to construct a dddPCR reaction. In terms of specificity, sensitivity and anti-interference ability, the constructed dddPCR detection system was verified and analyzed. The assay showed excellent sensitivity and applicability, as evidenced by a limit of detection of 100 cfu/mL. When the concentration of natural background bacteria in milk or fresh meat was 100 times that of the target detection bacteria, the method was still capable of completing the absolute quantification. In the simulation of actual sample contamination, P. aeruginosa could be detected after 3 h of enrichment culture, and P. fragi could be detected after 6 h. The established dddPCR detection system exhibits exceptional performance, serving as a foundation for the simultaneous detection of various pathogenic bacteria in food products.

2.
PhytoKeys ; (82): 15-26, 2017.
Article in English | MEDLINE | ID: mdl-28794679

ABSTRACT

Eutrema giganteum (Brassicaceae), a new species from Hengduan Mountains in Sichuan Province, southwest China, is described, and its relationships to the closely related E. yunnanense is discussed based on morphological, cytological, and molecular data. It is similar morphologically to E. yunnanense but is readily distinguished by having robust (vs. slender), erect (vs. decumbent), and branched (vs. mostly simple), and rather tall stems (60-110 cm vs. 20-60 cm); curved (vs. straight), smooth (vs. torulose), and shorter fruit (5-8 mm vs. 8-15 mm); and fewer ovules per ovary (1-4 vs. 6-10). All examined individuals from different populations of E. giganteum clustered into a single clade sister to E. yunnanense in phylogenetic analyses using the combined nuclear ITS and plastid DNA datasets. Our cytological studies revealed that the chromosome number of E. giganteum is 2n = 44, with a genome size of 1160 (±8) Mb, while that of E. yunnanense is 2n = 28, with a genome size of 718 (±15) Mb. Multiple lines of evidence support the recognition of E. giganteum as a distinct species well differentiated from E. yunnanense.

3.
Biomaterials ; 27(19): 3684-90, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16513164

ABSTRACT

Heart valve diseases have a significant high mortality, and the valve replacement using glutaraldehyde crosslinked porcine heart valves is one of the main curing techniques. But its application is limited due to poor durability, calcification of the valves and immunogenic reactions. The aim of this study was to evaluate the crosslinking effect of procyanidins on porcine heart valve matrix. After crosslinking of the decellularized porcine aortic heart valves by procyanidins, the tensile strength, the in vitro enzymatic degradation resistance, procyanidins release from the crosslinked materials and the cytotoxicity of procyanidins to heart valvular interstitial cells were examined. The results showed that the tensile strength of procyanidins crosslinked valve matrix was higher than that of glutaraldehyde crosslinked valve matrix. Valve matrix crosslinked by 10 mg/ml procyanidins could be stored in D-Hanks solution for at least 45 days without any decline in ultimate tensile strength and maintained the elasticity as the fresh valves. Furthermore, procyanidins was found to release when the crosslinked tissue stored in D-Hanks solution. The release rate was high during the first 4 days and then dramatically decreased thereafter. During releasing phase, the concentration of procyanidins was no toxicity to heart valve interstitial cells. In vitro enzymatic degradation revealed that crosslinked matrix could resist the enzymatic hydrolysis, and the resistant capacity was approximately the same as glutaraldehyde crosslinked valve matrix. This study shows that procyanidins can crosslink porcine heart valves effectively without toxicity. Our results suggested that this method might be a useful approach for preparation of bioprosthetic heart valve.


Subject(s)
Bioprosthesis , Cross-Linking Reagents , Heart Valve Prosthesis , Proanthocyanidins , Animals , Biocompatible Materials , Elasticity , Extracellular Matrix/chemistry , Humans , Materials Testing , Microscopy, Electron, Scanning , Sus scrofa , Tensile Strength , Tissue Engineering/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...