Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2404232, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934440

ABSTRACT

Pairing the positive and negative electrodes with their individual dynamic characteristics at a realistic cell level is essential to the practical optimal design of electrochemical energy storage devices (EESDs). However, the complex relationship between the performance data measured for individual electrodes and the two-electrode cells used in practice often makes an optimal pairing experimentally challenging. Taking advantage of our developed tunable graphene-based electrodes with controllable structure, we successfully unite experiments with machine learning to generate a large pool of capacitance data for graphene-based electrode materials with varied slit pore sizes, thicknesses, and charging rates and numerically pair them into different combinations for two-electrode cells. The results show that the optimal pairing parameters of positive and negative electrodes vary considerably with the operation rate of the cells and are even influenced by the thickness of inactive components. The best-performing individual electrode does not necessarily result in optimal cell-level performance. The machine learning-assisted pairing approach presents much higher efficiency compared with the traditional trial-and-error approach for the optimal design of supercapacitors. The results observed in this work also indicate the call for comprehensive performance data reporting in the electrochemical energy storage field to enable the adoption of artificial intelligence techniques to efficiently translate well-developed high-performance individual electrode materials into real energy storage devices. This article is protected by copyright. All rights reserved.

2.
ACS Nano ; 18(5): 4269-4286, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38270104

ABSTRACT

The repair of diabetic wounds remains challenging, primarily due to the high-glucose-derived immune inhibition which often leads to the excessive inflammatory response, impaired angiogenesis, and heightened susceptibility to infection. However, the means to reduce the immunosuppression and regulate the conversion of M2 phenotype macrophages under a high-glucose microenvironment using advanced biomaterials for diabetic wounds are not yet fully understood. Herein, we report two-dimensional carbide (MXene)-M2 macrophage exosome (Exo) nanohybrids (FM-Exo) for promoting diabetic wound repair by overcoming the high-glucose-derived immune inhibition. FM-Exo showed the sustained release of M2 macrophage-derived exosomes (M2-Exo) up to 7 days and exhibited broad-spectrum antibacterial activity. In the high-glucose microenvironment, relative to the single Exo, FM-Exo could significantly induce the optimized M2a/M2c polarization ratio of macrophages by activating the PI3K/Akt signaling pathway, promoting the proliferation, migration of fibroblasts, and angiogenic ability of endothelial cells. In the diabetic full-thickness wound model, FM-Exo effectively regulated the polarization status of macrophages and promoted their transition to the M2 phenotype, thereby inhibiting inflammation, promoting angiogenesis through VEGF secretion, and improving proper collagen deposition. As a result, the healing process was accelerated, leading to a better healing outcome with reduced scarring. Therefore, this study introduced a promising approach to address diabetic wounds by developing bioactive nanomaterials to regulate immune inhibition in a high-glucose environment.


Subject(s)
Diabetes Mellitus , Exosomes , Nanocomposites , Nitrites , Transition Elements , Humans , Wound Healing , Endothelial Cells , Exosomes/metabolism , Phosphatidylinositol 3-Kinases , Diabetes Mellitus/metabolism , Glucose/metabolism , Nanocomposites/therapeutic use
3.
Int Immunopharmacol ; 119: 110204, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37126988

ABSTRACT

Due to their simplicity and reliability, random-pattern skin flaps are commonly utilized in surgical reconstruction to repair cutaneous wounds. However, the post-operative necrosis frequently happens because of the ischemia and high-level of oxidative stress of random skin flaps, which can severely affect the healing outcomes. Earlier evidence has shown promising effect of Nuciferine (NF) on preventing hydrogen peroxide (H2O2)-induced fibroblast senescence and ischemic injury, however, whether it can function on promoting ischemic flap survival remains unknown. In this work, using network pharmacology analysis, it was possible to anticipate the prospective targets of NF in the context of ischemia. The results revealed that NF treatment minimized H2O2-induced cellular dysfunction of human umbilical vein endothelial cells (HUVECs), and also improved flap survival through strengthening angiogenesis and alleviating oxidative stress, inflammation and apoptosis in vivo. These outcomes should be attributed to TFEB-mediated enhancement of autophagy-lysosomal degradation via the AMPK-mTOR signaling pathway, whilst the restriction of autophagy stimulation with 3MA effectively diminished the above advantages of NF treatment. The increased nuclear translocation of TFEB not only restored lysosome function, but also promoted autophagosome-lysosome fusion, eventually restoring the inhibited autophagic flux and filling the high energy levels. The outcomes of our research can provide potent proof for the application of NF in the therapy of vascular insufficiency associated disorders, including random flaps.


Subject(s)
Aporphines , Autophagy , Surgical Flaps , Humans , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Human Umbilical Vein Endothelial Cells/metabolism , Hydrogen Peroxide/adverse effects , Lysosomes , Reproducibility of Results , Aporphines/pharmacology
4.
Front Bioeng Biotechnol ; 11: 1129538, 2023.
Article in English | MEDLINE | ID: mdl-36937759

ABSTRACT

The tissue reconstruction of diabetic wounds mainly depends on the proliferation and remodelling of cutaneous cells around wounds and the transplantation of random skin flaps, however, the proliferation of cells or survival of skin flaps are difficult due to the severe inflammation and other problems caused by diabetes. The stem cell-derived exosomes loaded with miRNA can be an effective therapeutic strategy for promoting diabetic wound healing. Therefore, in this study, the engineered exosomes derived from miR-132-overexpressing adipose stem cells (miR-132-exo) was obtained for promoting the healing of diabetic wounds and skin flaps. In vitro, the miR-132-exo promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs). In vivo, streptozotocin (STZ) induced diabetic mice were used to create full-thickness skin wounds and random skin flaps to further investigate the healing effect of miR-132-exo. The results showed miR-132-exo evidently enhanced the survival of skin flaps and promote diabetic wound healing, through reducing local inflammation, promoting angiogenesis and stimulating M2-macrophages polarization mediated by NF-κB signaling pathway. These novel findings demonstrated that engineered miR-132-exo can be a potent therapeutic for treating diabetic wounds and inflammatory-related disease.

5.
Oxid Med Cell Longev ; 2022: 1619651, 2022.
Article in English | MEDLINE | ID: mdl-35528512

ABSTRACT

Sirtuin 6 (SIRT6) is an NAD+-dependent deacetylase belonging to the sirtuin family. It has been shown to participate in wound healing and some inflammation-related disorders. However, the effect of MDL-800, a highly efficient and selective SIRT6 activator, on wound healing and inflammation has not been reported. Therefore, this study investigated whether MDL-800 confers anti-inflammatory effects and promotes wound healing and uncovered the molecular mechanisms involved. This was achieved using mouse models of full-thickness wounds. Results showed that MDL-800 significantly downregulated inflammation by attenuating the release of inflammatory mediators and improved collagen deposition and neovascularization of wounds, thereby accelerating cutaneous wound healing. Furthermore, MDL-800 significantly downregulated expression levels of TNF-α and IL-6 in the dorsal skin tissue of mice via the NF-κB pathway. These results demonstrated that MDL-800 exerted anti-inflammatory and prohealing effects, indicating that the SIRT6/NF-κB/IκB signaling pathway may play an important role in wound healing.


Subject(s)
NF-kappa B , Sirtuins , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Benzoates , Inflammation/drug therapy , Inflammation/metabolism , Mice , NF-kappa B/metabolism , Neovascularization, Pathologic , Sirtuins/metabolism , Sulfur Compounds , Wound Healing
6.
Natl Sci Rev ; 9(4): nwab184, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35401990

ABSTRACT

Human bodily movements are primarily controlled by the contractions of skeletal muscles. Unlike joint or skeletal movements that are generally performed in the large displacement range, the contractions of the skeletal muscles that underpin these movements are subtle in intensity yet high in frequency. This subtlety of movement makes it a formidable challenge to develop wearable and durable soft materials to electrically monitor such motions with high fidelity for the purpose of, for example, muscle/neuromuscular disease diagnosis. Here we report that an intrinsically fragile ultralow-density graphene-based cellular monolith sandwiched between silicone rubbers can exhibit a highly effective stress and strain transfer mechanism at its interface with the rubber, with a remarkable improvement in stretchability (>100%). In particular, this hybrid also exhibits a highly sensitive, broadband-frequency electrical response (up to 180 Hz) for a wide range of strains. By correlating the mechanical signal of muscle movements obtained from this hybrid material with electromyography, we demonstrate that the strain sensor based on this hybrid material may provide a new, soft and wearable mechanomyography approach for real-time monitoring of complex neuromuscular-skeletal interactions in a broad range of healthcare and human-machine interface applications. This work also provides a new architecture-enabled functional soft material platform for wearable electronics.

7.
Sci Rep ; 8(1): 3909, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29500394

ABSTRACT

This study found that miR-27 is expressed in muscle and regulates muscle proliferation and differentiation. We explored the function and regulatory mechanism of miR-27b in goat muscle proliferation and differentiation. Compared with the Boer goat, higher expression of miR-27b was observed in all of the collected muscle tissues of Anhuai goat, excluding the kidney, whereas the opposite expression pattern was observed for Pax3, which showed lower expression in Anhuai goat. Expression of miR-27b decreased gradually during the proliferation of skeletal muscle satellite cells in Anhuai goat and increased during differentiation; however, the expression pattern of Pax3 was opposite. The regulatory activity of miR-27b demonstrated that miR-27b inhibited the proliferation of skeletal muscle satellite cells, but promoted their differentiation. Moreover, function research demonstrated that Pax3 negatively regulated myogenic differentiation of goat skeletal muscle satellite cells, but accelerated their proliferation. The results of a dual-luciferase reporter analysis showed that miR-27b directly targeted the 3'-untranslated regions of Pax3 mRNA, and western blot and immunofluorescence staining analyses showed that miR-27b inhibited expression of the Pax3 protein. In goats, miR-27b can regulate myogenic proliferation and differentiation by targeting Pax3.


Subject(s)
Cell Differentiation , Cell Proliferation , Gene Expression Regulation, Developmental , MicroRNAs/genetics , Muscle Development , PAX3 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/cytology , Animals , Cells, Cultured , Female , Goats , PAX3 Transcription Factor/genetics , Satellite Cells, Skeletal Muscle/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...