Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Zhongguo Dang Dai Er Ke Za Zhi ; 22(5): 512-518, 2020 May.
Article in Chinese | MEDLINE | ID: mdl-32434650

ABSTRACT

OBJECTIVE: To study the expression and effect of Pim1 in primary cortical neurons after hypoxic-ischemic injury. METHODS: Cortical neurons were isolated from 1-day-old C57BL/6 mice and cultured in neurobasal medium. On the 8th day of neuron culture, cells were subjected to oxygen-glucose deprivation/reoxygen (OGD/R) treatment to mimic in vivo hypoxic injury of neurons. Briefly, medium were changed to DMEM medium, and cells were cultured in 1% O2 for 3 hours and then changed back to normal medium and conditions. Cells were collected at 0 hour, 6 hours, 12 hours and 24 hours after OGD/R. Primary neurons were transfected with Pim1 overexpression plasmid or mock plasmid, and then were exposed to normal conditions or OGD/R treatment. They were named as Pim1 group, control group, OGD/R group and OGD/R+Pim1 group respectively. Real-time PCR was used to detect Pim1 mRNA expression. Western blot was used to detect the protein expression of Pim1 and apoptotic related protein cleaved caspase 3 (CC3). TUNEL staining was used to detect cell apoptosis. RESULTS: Real-time PCR and Western blot results showed that Pim1 mRNA and protein were significantly decreased in neurons after OGD/R. They began to decrease at 0 hour after OGD/R, reached to the lowest at 12 hours after OGD/R, and remained at a lower level at 24 hours after OGD/R (P<0.01). Overexpression of Pim1 significantly upregulated the protein level of Pim1. Under OGD/R conditions, the CC3 expression and the apoptosis rate in cells of the Pim1 group were significantly lower than in un-transfected cells (P<0.01). CONCLUSIONS: Hypoxic-ischemic injury may decrease Pim1 expression in neurons. Overexpressed Pim1 may inhibit apoptosis induced by OGD/R.


Subject(s)
Neurons , Animals , Glucose , Mice , Mice, Inbred C57BL , Oxygen , Proto-Oncogene Proteins c-pim-1 , Rats, Sprague-Dawley
2.
Cell Biochem Biophys ; 67(3): 1539-46, 2013.
Article in English | MEDLINE | ID: mdl-23737339

ABSTRACT

To observe the effect of hyperoxia on the growth of type II alveolar epithelial cells (AEC II). The lungs of 19-day gestation fetal rats were primary cultured and the AEC II were purified by differential adhesion method. The cells were divided into control (normoxia) group and hyperoxia group. The cell growth, cell viability, cell apoptosis, and cell cycle were examined at 2, 4, 6, and 8 days of normoxia or hyperoxia exposure. The number of cells in hyperoxia-exposed group significantly decreased as compared to those of air control group. Number of cells in hyperoxia group was the highest at day 2 of exposure and gradually decreased with time. The viability of cells exposed to hyperoxia was substantially reduced compared with cells exposed to air. Percentage of cells in G1 phase and S phase in hyperoxia group increased gradually with increase in exposure duration and significant differences were seen at day 4 and day 6 compared with either the preceding time points and also with corresponding air-exposed cells. The percentage of both early apoptotic cells (Annexin-V(+)/PI(-)) and late apoptotic cells and necrotic cells (Annexin-V(+)/PI(+)) increased significantly in cells exposed to hyperoxia compared with cells exposed to air. Hyperoxia inhibits proliferation, viability and growth of AEC II and promotes apoptosis.


Subject(s)
Cell Hypoxia , Epithelial Cells/cytology , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , G1 Phase , Rats , Rats, Sprague-Dawley , S Phase , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...