Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Small ; : e2311658, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733228

ABSTRACT

Under damp or aquatic conditions, the corrosion products deposited on micro-cracks/pore sites bring about the failure of intrinsically healable organic coatings. Inspired by mussels, a composite coating of poly (methyl methacrylate-co-butyl acylate-co-dopamine acrylamide)/phenylalanine-functionalized boron nitride (PMBD/BN-Phe) is successfully prepared on the reinforcing steel, which exhibits excellent anti-corrosion and underwater self-healing capabilities. The self-healing property of PMBD is derived from the synergistic effect of hydrogen bonding and metal-ligand coordination bonding, and thereby the continuous generation of corrosion products can be significantly suppressed through in situ capture of cations by the catechol group. Furthermore, the corrosion protection ability can be remarkably improved by the labyrinth effect of BN and the inhibition role of Phe, and the desired interfacial compatibility can be formed by the hydrogen bonds between BN-Phe and PMBD matrix. The corrosion current density (icorr) of PMBD/BN-Phe coating is determined as 7.95 × 10-11 A cm-2. The low-frequency impedance modulus (|Z|f  =  0.0 1 Hz is remained at 3.47 × 109 Ω cm2, indicating an ultra-high self-healing efficiency (≈89.5%). It is anticipated to provide a unique strategy for development of an underwater self-healing coating and robust durability for application in anti-corrosion engineering of marine buildings.

2.
Adv Sci (Weinh) ; 10(21): e2300952, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178366

ABSTRACT

Two-dimensional transition metal dichalcogenides (2D TMDs) present promising applications in various fields such as electronics, optoelectronics, memory devices, batteries, superconductors, and hydrogen evolution reactions due to their regulable energy band structures and unique properties. For emerging spintronics applications, materials with excellent room-temperature ferromagnetism are required. Although most transition metal compounds do not possess room-temperature ferromagnetism on their own, they are widely modified by researchers using the emerging strategies to engineer or modulate their intrinsic properties. This paper reviews recent enhancement approaches to induce magnetism in 2D TMDs, mainly using doping, vacancy defects, composite of heterostructures, phase modulation, and adsorption, and also by electron irradiation induction, O plasma treatment, etc. On this basis, the produced effects of these methods for the introduction of magnetism into 2D TMDs are compressively summarized and constructively discussed. For perspective, research on magnetic doping techniques for 2D TMDs materials should be directed toward more reliable and efficient directions, such as exploring advanced design strategies to combine dilute magnetic semiconductors, antiferromagnetic semiconductors, and superconductors to develop new types of heterojunctions; and advancing experimentation strategies to fabricate the designed materials and enable their functionalities with simultaneously pursuing the upscalable growth methods for high-quality monolayers to multilayers.

3.
Small ; 19(37): e2301468, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37140080

ABSTRACT

2D 2H-phase MoS2 is promising for electrocatalytic applications because of its stable phase, rich edge sites, and large surface area. However, the pristine low-conductive 2H-MoS2 suffers from limited electron transfer and surface activity, which become worse after their highly likely aggregation/stacking and self-curling during applications. In this work, these issues are overcome by conformally attaching the intercalation-detonation-exfoliated, surface S-vacancy-rich 2H-MoS2 onto robust conductive carbon nanotubes (CNTs), which electrically bridge bulk electrode and local MoS2 catalysts. The optimized MoS2 /CNTs nanojunctions exhibit outstanding stable electroactivity (close to commercial Pt/C): a polarization overpotential of 79 mV at the current density of 10 mA cm-2 and the Tafel slope of 33.5 mV dec-1 . Theoretical calculations unveil the metalized interfacial electronic structure of MoS2 /CNTs nanojunctions, enhancing defective-MoS2 surface activity and local conductivity. This work provides guidance on rational design for advanced multifaceted 2D catalysts combined with robust bridging conductors to accelerate energy technology development.

4.
R Soc Open Sci ; 10(2): 220740, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36778960

ABSTRACT

The solid lubricating coatings have an important role in hot metal forming. However, traditional lubricants cannot be applied to the harsh working conditions. In this investigation, the novel solid lubricant coatings including multi-layer graphene (MLG)/silicon dioxide (SiO2) composites and sodium metaphosphate phosphate were prepared. The high-temperature tribological properties of the solid lubricant coatings were investigated by friction and wear tester. The experimental results showed that SiO2 nanoparticles were evenly grafted by sol-gel method on the surface of MLG, forming MLG/SiO2 composites. MLG/SiO2 composites presented excellent thermal stability at 800°C. In the range of 400-800°C, the average coefficients of friction (COFs) were decreased from 0.3936 to 0.3663, and then increased from 0.3663 to 0.4226. Based on the analysis of wear scar, the lubrication mechanisms of the solid lubricating coatings were proposed. The low interlayer shear of MLG and the ball bearing of SiO2 nanoparticles are the main reason for the reduction of COFs. In addition, the tribo-chemical reaction film formed on the frictional interface could protect the contact surfaces from severe damage. The findings would be beneficial for developing novel lubricants for hot metal forming process.

5.
Small ; 19(14): e2207177, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36703535

ABSTRACT

2D molybdenum disulfide (MoS2 ) is developed as a potential alternative non-precious metal electrocatalyst for energy conversion. It is well known that 2D MoS2 has three main phases 2H, 1T, and 1T'. However, the most stable 2H-phase shows poor electrocatalysis in its basal plane, compared with its edge sites. In this work, a facile one-step hydrothermal-driven in situ porousizing of MoS2 into self-supporting nano islands to maximally expose the edges of MoS2 grains for efficient utilization of the active stable sites at the edges of MoS2 is reported. The results show that such active, aggregation-free nano islands greatly enhance MoS2 's hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) bifunctional electrocatalytic activities. At a low overpotential of 248 and 300 mV, the porous MoS2 nano islands can generate a current density of 10 mA cm-2 in HER and OER, which is much better than typical nanosheet morphology. Surprisingly, the porous MoS2 nano islands even exhibit better performance than the current commercial RuO2 catalyst in OER. This discovery will be another effective strategy to promote robust 2H-phase, instead of 1T/1T'-phase, MoS2 to achieve efficient endurable bifunctional HER/OER, which is expected to further replace precious metal catalysts in industry.

6.
Front Bioeng Biotechnol ; 10: 953344, 2022.
Article in English | MEDLINE | ID: mdl-36051586

ABSTRACT

Magnesium (Mg) and Mg alloys are considered as potential candidates for biomedical applications because of their high specific strength, low density, and elastic modulus, degradability, good biocompatibility and biomechanical compatibility. However, the rapid corrosion rate of Mg alloys results in premature loss of mechanical integrity, limiting their clinical application in load-bearing parts. Besides, the low strength of Mg alloys restricts their further application. Thus, it is essential to understand the characteristics and influencing factors of mechanical and corrosion behavior, as well as the methods to improve the mechanical performances and corrosion resistance of Mg alloys. This paper reviews the recent progress in elucidating the corrosion mechanism, optimizing the composition, and microstructure, enhancing the mechanical performances, and controlling the degradation rate of Mg alloys. In particular, the research progress of surface modification technology of Mg alloys is emphasized. Finally, the development direction of biomedical Mg alloys in the future is prospected.

7.
Materials (Basel) ; 15(6)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35329470

ABSTRACT

Spherical molybdenum nano-powders were in-situ ultrafast synthesized from ammonium paramolybdate (APM) raw materials in a one-step reduction method by radio frequency (RF) hydrogen plasma. Due to the extreme conditions of the RF plasma torch such as its high temperature and large temperature gradient, the injected raw APM powder was quickly gasified and then reduced into nano-sized metal molybdenum (Mo) powder. The influences of APM powder delivery rate and H2 concentration on the properties of the obtained powders were investigated. Field-emission scanning electron microscope (FESEM), transmission electron microscope (TEM), X-ray diffraction (XRD), nanolaser particle analyzer, and specific surface area method were used to characterize the morphology, phase, and particle size distribution of the powders. The results showed that the nano-sized Mo powder obtained by hydrogen plasma treatment had a quasi-spherical morphology and an average particle size of about 30 nm. The particle size could be successfully adjusted by varying H2 concentrations. In addition, spherical nano-sized MoO3 powder could be obtained when no H2 was added into the RF plasma.

8.
Front Bioeng Biotechnol ; 9: 605171, 2021.
Article in English | MEDLINE | ID: mdl-33842443

ABSTRACT

Magnesium (Mg) and its alloys have attached more and more attention because of their potential as a new type of biodegradable metal materials. In this work, AZ31/ZrO2 nanocomposites with good uniformity were prepared successfully by friction stir processing (FSP). The scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the microstructure of the composites. The mechanical properties, electrochemical corrosion properties and biological properties were evaluated. In addition, the effect of reinforced particles (ZrO2) on the microstructure and properties of the composite was studied comparing with FSP AZ31 Mg alloy. The results show that compared with the base metal (BM), the AZ31/ZrO2 composite material achieves homogenization, densification, and grain refinement after FSP. The combination of dynamic recrystallization and ZrO2 particles leads to grain refinement of Mg alloy, and the average grain size of AZ31/ZrO2 composites is 3.2 µm. After FSP, the c-axis of grain is deflected under the compression stress of shoulder and the shear stress of pin. The ultimate tensile strength (UTS) and yield strength (YS) of BM were 283 and 137 MPa, respectively, the UTS and YS of AZ31/ZrO2 composites were 427 and 217 MPa, respectively. The grain refinement and Orowan strengthening are the major strengthening mechanisms. Moreover, the corrosion resistance in simulated body fluid of Mg alloy is improved by grain refinement and the barrier effect of ZrO2.

9.
Materials (Basel) ; 14(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669893

ABSTRACT

Many urgently needed inconel superalloy parts with complex internal cavity geometry and high surface precision are difficult to prepare by traditional subtractive manufacturing methods because of its poor machinability. The additive manufacturing technology that has emerged in recent years became a research hotspot in the manufacture of refractory and difficult-to-process metals. In the present study, selective laser melting (SLM), a typical additive manufacture technology, was used to prepare Inconel 718 samples. The influences of input laser energy density ((E, J/mm3) on densification behavior, phases composition, microstructures, microhardness, and wear performance of the SLM as-built Inconel 718 samples were explored in detail. X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to examine the phase composition and microstructure evolutions. The results show that the formablity, microstructures and mechanical properties of the printed samples were all improved with the increase of E within the parameter setting range of this study. At a lower E, the poor surface morphology and balling effect occurred, the density, hardness, and wear resistance were all at a relatively lower level. When an E value of 190 J/mm was properly set, the surface open-pores and balling effect disappeared, the laser scanning tracks became smooth and continuous, the near-full dense (99.15%) and specimens with good metallurgical bonding and no critical defect were obtained, in which the average microhardness value reached 348 HV0.2 and wear rate was 5.67 × 10-4 mm3/N·m. The homogeneity of the superalloy Inconel 718 was also explored.

10.
R Soc Open Sci ; 7(9): 200530, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33047021

ABSTRACT

The black phosphorus (BP) powders were prepared by high-energy ball milling with red phosphorus as the raw material, and then the BP nanosheets were obtained by liquid-phase exfoliation. The tribological properties of the BP nanosheets as oil-based lubricant additives were investigated by the ball-on-disc tribometer. Results show that compared with the base oil of liquid paraffin (LP), the coefficient of friction and wear rate of the BP nanosheets as the additives in liquid paraffin (BP-LP) are lower for the same loads. BP-LP lubricants could significantly improve the load-bearing capacity of the base oil for titanium alloy-steel contacts and show excellent friction-reducing and anti-wear properties. The surface morphologies and elemental compositions of the friction pairs were further analysed using an optional microscope, scanning electron microscope and X-ray photoelectron spectroscopy. The lubrication mechanism of BP-LP can be attributed to the synergistic effects between lamellar adsorption and interlayer shear of BP nanosheets.

11.
Ultrason Sonochem ; 52: 336-343, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30573433

ABSTRACT

Hydraulic components are coated by thermal spraying to protect them against cavitation erosion. These coatings are built up by successive deposition of single splats. The behavior of a single splat under mechanical loading is still very vaguely understood. Yttria-stabilized zirconia (YSZ) and stainless-steel splats were obtained by plasma spraying onto stainless steel substrates. The velocity and temperature of particles upon impact were measured and the samples were subsequently exposed to cavitation erosion tests. An acoustic cavitation simulation estimated the water jet velocity and hammer stresses exerted by bubble collapse on the surface of the specimen. Although the results suggested that high stress levels resulted from cavitation loading, it was clear that weak adhesion interfaces played a crucial role in the accelerated cavitation-induced degradation.

12.
ACS Appl Mater Interfaces ; 10(48): 41155-41166, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30403843

ABSTRACT

Numerous antibacterial biomaterials have been developed, but a majority of them suffer from poor biocompatibility. With the purpose of reducing biomaterial-related infection and cytotoxicity, friction stir processing (FSP) was employed to embed silver nanoparticles (Ag NPs) in a Ti-6Al-4V (TC4) substrate. Characterization using scanning electron microscopy, transmission electron microscopy, and three-dimensional atom probe tomography illustrates that NPs are distributed more homogeneously on the surface of TC4 as the groove depth increases, and silver-rich NPs with a size from 10 to 20 nm exist as metallic silver diffused into the substrate, where the silver content is 4.3-5.6%. Electrochemical impedance spectroscopy shows that both FSP and the addition of silver have positive effects on corrosion resistance. The modified samples effectively inhibit both Staphylococcus aureus and Escherichia coli strains and slightly reduce their adhesion while not displaying any cytotoxicity to bone mesenchymal stem cells in vitro. The antibacterial effect is independent of Ag-ion release and is likely due to the number of embedded silver NPs on the surface, which directly contact and subsequently destroy the cell membrane. Our study shows that the TC4/Ag metal matrix nanocomposite is a potential infection-related biomaterial and that embedding Ag NPs tightly on a biomaterial surface is an effective strategy for striking a balance between the antibacterial effect and biocompatibility, providing an innovative approach for accurately controlling the cytotoxicity of infection-related biomaterials.


Subject(s)
Anti-Bacterial Agents , Escherichia coli/growth & development , Mesenchymal Stem Cells/metabolism , Metal Nanoparticles/chemistry , Nanocomposites/chemistry , Silver , Staphylococcus aureus/growth & development , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Friction , Mesenchymal Stem Cells/cytology , Rats , Rats, Sprague-Dawley , Silver/chemistry , Silver/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...