Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 24.
Article in English | MEDLINE | ID: mdl-38891905

ABSTRACT

The DABB proteins, which are characterized by stress-responsive dimeric A/B barrel domains, have multiple functions in plant biology. In Arabidopsis thaliana, these proteins play a crucial role in defending against various pathogenic fungi. However, the specific roles of DABB proteins in Brassica napus remain elusive. In this study, 16 DABB encoding genes were identified, distributed across 10 chromosomes of the B. napus genome, which were classified into 5 branches based on phylogenetic analysis. Genes within the same branch exhibited similar structural domains, conserved motifs, and three-dimensional structures, indicative of the conservation of BnaDABB genes (BnaDABBs). Furthermore, the enrichment of numerous cis-acting elements in hormone induction and light response were revealed in the promoters of BnaDABBs. Expression pattern analysis demonstrated the involvement of BnaDABBs, not only in the organ development of B. napus but also in response to abiotic stresses and Sclerotinia sclerotiorum infection. Altogether, these findings imply the significant impacts of BnaDABBs on plant growth and development, as well as stress responses.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Brassica napus/genetics , Brassica napus/microbiology , Brassica napus/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant , Ascomycota/genetics , Plant Diseases/microbiology , Plant Diseases/genetics
2.
Int J Mol Sci ; 24(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37628959

ABSTRACT

Chalkiness is a key determinant that directly affects the appearance and cooking quality of rice grains. Previously, Floury endosperm 2 (FLO2) was reported to be involved in the formation of rice chalkiness; however, its regulation mechanism is still unclear. Here, FLO2 interaction factor 3 (OsFIF3), a bHLH transcription factor, was identified and analyzed in Oryza sativa. A significant increase in chalkiness was observed in OsFIF3-overexpressed grains, coupled with a round, hollow filling of starch granules and reduced grain weight. OsFIF3 is evolutionarily conserved in monocotyledons, but variable in dicotyledons. Subcellular localization revealed the predominant localization of OsFIF3 in the nucleus. The DAP-seq (DNA affinity purification sequencing) results showed that OsFIF3 could affect the transcriptional accumulation of ß-amylase 1, α-amylase isozyme 2A-like, pectinesterase 11, ß-glucosidase 28 like, pectinesterase, sucrose transport protein 1 (SUT1), and FLO2 through the binding of the CACGTG motif on their promoters. Moreover, FLO2 and SUT1 with abundant OsFIF3 binding signals showed significant expression reduction in OsFIF3 overexpression lines, further confirming OsFIF3's role in starch metabolism regulation and energy material allocation. Taken together, these findings show that the overexpression of OsFIF3 inhibits the expression of FLO2 and SUT1, thereby increasing grain chalkiness and affecting grain weight.


Subject(s)
Oryza , Oryza/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , Carbohydrate Metabolism , Edible Grain , Seeds , Calcium Carbonate
3.
Front Nutr ; 10: 1126456, 2023.
Article in English | MEDLINE | ID: mdl-37006930

ABSTRACT

Mussels are a kind of economically valuable ocean bivalve shellfish. It has a short harvest period and is susceptible to contamination during storage and processing. Having proper preservation methods is critical to prevent quality deterioration. However, the effect of low voltage variable frequency electric field and compound preservative on the freshness of steamed mussels in ice-temperature storage are still unknown. We utilized the method of coefficient variation weighting to calculate the overall scores of steamed mussels stored under different preservation conditions. The protein physicochemical properties of samples, the growth curves of two dominant spoilage bacteria; Bacillus subtilis and Pseudomonas in the mussels as well as the Structural changes of the cell membranes were mensurated. The results show that compared with the preservative group and the low voltage variable frequency electric field group, the compound preservatives combined with the electric field group had the highest overall score and thus the best preservation effect. Compared with the blank group, the total sulfhydryl content and myogenic fibrin content of the combined group decreased at the slowest rate, 19.46%, and 44.92%, respectively. The hydrophobicity of the protein surface increased by only 5.67%, with the best water retention, indicating that the samples of the combined group had the least protein deterioration in the combined group. The inhibition mechanism of the combined group inhibited the growth of two dominant spoilage bacteria: Bacillus subtilis and Pseudomonas, in the mussels, destroying the integrity of the cell membrane structure and changing the cell morphology. Overall, we found that the combination of the composite preservatives and the low voltage variable frequency electric field can maintain the best quality of steamed mussels during ice-temperature storage and slow down the rate of protein deterioration during storage. This study proposed a new method of mussel preservation, which provides a new idea for the application of low voltage variable frequency electric field and compound preservative in the preservation of aquatic products.

4.
J Fungi (Basel) ; 10(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38248922

ABSTRACT

The ADP-ribosylation factor 6 (Arf6), as the only member of the Arf family III protein, has been extensively studied for its diverse biological functions in animals. Previously, the Arf6 protein in Magnaporthe oryzae was found to be crucial for endocytosis and polarity establishment during asexual development. However, its role remains unclear in S. sclerotiorum. Here, we identified and characterized SsArf6 in S. sclerotiorum using a reverse genetic approach. Deletion of SsArf6 impaired hyphal growth and development and produced more branches. Interestingly, knockout of SsArf6 resulted in an augmented tolerance of S. sclerotiorum towards oxidative stress, and increased its sensitivity towards osmotic stress, indicative of the different roles of SsArf6 in various stress responses. Simultaneously, SsArf6 deletion led to an elevation in melanin accumulation. Moreover, the appressorium formation was severely impaired, and fungal virulence to host plants was significantly reduced. Overall, our findings demonstrate the essential role of SsArf6 in hyphal development, stress responses, appressorium formation, and fungal virulence to host plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...