Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
mSystems ; : e0001224, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742876

ABSTRACT

In arthropod-associated microbial communities, insect-specific viruses (ISVs) are prevalent yet understudied due to limited infectivity outside their natural hosts. However, ISVs might play a crucial role in regulating mosquito populations and influencing arthropod-borne virus transmission. Some studies have indicated a core virome in mosquitoes consisting of mostly ISVs. Employing single mosquito metagenomics, we comprehensively profiled the virome of native and invasive mosquito species in Belgium. This approach allowed for accurate host species determination, prevalence assessment of viruses and Wolbachia, and the identification of novel viruses. Contrary to our expectations, no abundant core virome was observed in Culex mosquitoes from Belgium. In that regard, we caution against rigidly defining mosquito core viromes and encourage nuanced interpretations of other studies. Nonetheless, our study identified 45 viruses of which 28 were novel, enriching our understanding of the mosquito virome and ISVs. We showed that the mosquito virome in this study is species-specific and less dependent on the location where mosquitoes from the same species reside. In addition, because Wolbachia has previously been observed to influence arbovirus transmission, we report the prevalence of Wolbachia in Belgian mosquitoes and the detection of several Wolbachia mobile genetic elements. The observed prevalence ranged from 83% to 92% in members from the Culex pipiens complex.IMPORTANCECulex pipiens mosquitoes are important vectors for arboviruses like West Nile virus and Usutu virus. Virome studies on individual Culex pipiens, and on individual mosquitoes in general, have been lacking. To mitigate this, we sequenced the virome of 190 individual Culex and 8 individual Aedes japonicus mosquitoes. We report the lack of a core virome in these mosquitoes from Belgium and caution the interpretation of other studies in this light. The discovery of new viruses in this study will aid our comprehension of insect-specific viruses and the mosquito virome in general in relation to mosquito physiology and mosquito population dynamics.

2.
Antiviral Res ; 225: 105858, 2024 May.
Article in English | MEDLINE | ID: mdl-38490342

ABSTRACT

Chikungunya virus (CHIKV) is a mosquito-borne virus transmitted by Aedes mosquitoes. While there are no antiviral therapies currently available to treat CHIKV infections, several licensed oral drugs have shown significant anti-CHIKV activity in cells and in mouse models. However, the efficacy in mosquitoes has not yet been assessed. Such cross-species antiviral activity could be favorable, since virus inhibition in the mosquito vector might prevent further transmission to vertebrate hosts. Here, we explored the antiviral effect of ß-d-N4-hydroxycytidine (NHC, EIDD-1931), the active metabolite of molnupiravir, on CHIKV replication in Aedes aegypti mosquitoes. Antiviral assays in mosquito cells and in ex vivo cultured mosquito guts showed that NHC had significant antiviral activity against CHIKV. Exposure to a clinically relevant concentration of NHC did not affect Ae. aegypti lifespan when delivered via a bloodmeal, but it slightly reduced the number of eggs developed in the ovaries. When mosquitoes were exposed to a blood meal containing both CHIKV and NHC, the compound did not significantly reduce virus infection and dissemination in the mosquitoes. This was confirmed by modelling and could be explained by pharmacokinetic analysis, which revealed that by 6 h post-blood-feeding, 90% of NHC had been cleared from the mosquito bodies. Our data show that NHC inhibited CHIKV replication in mosquito cells and gut tissue, but not in vivo when mosquitoes were provided with a CHIKV-infectious bloodmeal spiked with NHC. The pipeline presented in this study offers a suitable approach to identify anti-arboviral drugs that may impede replication in mosquitoes.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Cytidine/analogs & derivatives , Animals , Mice , Chikungunya virus/physiology , Virus Replication , Antiviral Agents
3.
PLoS Negl Trop Dis ; 17(9): e0011649, 2023 09.
Article in English | MEDLINE | ID: mdl-37729233

ABSTRACT

BACKGROUND: West Nile virus (WNV) and Usutu virus (USUV) are emerging arthropod-borne viruses (arboviruses) in Europe transmitted by Culex mosquitoes. In Belgium, it is currently unknown which Culex species are competent vectors for WNV or USUV and if these mosquitoes carry Wolbachia, an endosymbiotic bacterium that can block arbovirus transmission. The aims of our study were to measure the vector competence of Belgian Culex mosquitoes to WNV and USUV and determine if a naturally acquired Wolbachia infection can influence virus transmission. METHODOLOGY/PRINCIPAL FINDINGS: Female Culex mosquitoes were captured from urban and peri-urban sites in Leuven, Belgium and offered an infectious bloodmeal containing WNV lineage 2, USUV European (EU) lineage 3, or USUV African (AF) lineage 3. Blood-fed females were incubated for 14 days at 25°C after which the body, head, and saliva were collected to measure infection, dissemination, and transmission rates as well as transmission efficiency. Mosquito species were identified by qRT-PCR or Sanger sequencing, the presence of infectious virus in mosquitoes was confirmed by plaque assays, and viral genome copies were quantified by qRT-PCR. Culex pipiens pipiens were able to transmit WNV (4.3% transmission efficiency, n = 2/47) but not USUV (EU lineage: n = 0/56; AF lineage: n = 0/37). In contrast, Culex modestus were able to transmit USUV (AF lineage: 20% transmission efficiency, n = 1/5) but not WNV (n = 0/6). We found that the presence or absence of Wolbachia was species-dependent and did not associate with virus transmission. CONCLUSIONS/SIGNIFICANCE: This is the first report that Belgian Culex mosquitoes can transmit both WNV and USUV, forewarning the risk of human transmission. More research is needed to understand the potential influence of Wolbachia on arbovirus transmission in Culex modestus mosquitoes.


Subject(s)
Arboviruses , Culex , Culicidae , Flavivirus , West Nile Fever , West Nile virus , Animals , Female , Humans , West Nile virus/genetics , Belgium , Flavivirus/genetics , Mosquito Vectors
4.
Antiviral Res ; 217: 105694, 2023 09.
Article in English | MEDLINE | ID: mdl-37532005

ABSTRACT

The antimalarial drug atovaquone was recently reported to inhibit the in vitro replication of different arboviruses, including chikungunya virus (CHIKV) and Zika virus (ZIKV). Furthermore, atovaquone was shown to block Plasmodium parasite transmission by Anopheles mosquitoes when the mosquitoes were exposed to low concentrations on treated surfaces (i.e. tarsal exposure). Therefore, we evaluated the anti-CHIKV and -ZIKV effects of atovaquone via tarsal exposure in Aedes aegypti mosquitoes. We first confirmed that atovaquone exerted a dose-dependent antiviral effect on CHIKV and ZIKV replication in mosquito-derived cells. The modest antiviral effect could be rescued by adding exogenous uridine. Next, we assessed the effect of tarsal exposure to atovaquone on the fitness of Ae. aegypti. Concentrations up to 100 µmol/m2 did not affect the fecundity and egg-hatching rate. No significant effect on mosquito survival was observed when mosquitoes were exposed to concentrations up to 25 µmol/m2. To evaluate the antiviral effect of atovaquone against CHIKV, we exposed female mosquitoes to 100 µmol/m2 atovaquone for 1h, after which the mosquitoes were immediately infected with CHIKV or ZIKV via bloodmeal. Atovaquone did not significantly reduce ZIKV or CHIKV infection in Ae. aegypti, but successfully blocked the transmission of CHIKV in saliva. Tarsal exposure to antiviral drugs could therefore be a potential new strategy to reduce virus transmission by mosquitoes.


Subject(s)
Aedes , Chikungunya Fever , Chikungunya virus , Zika Virus Infection , Zika Virus , Animals , Female , Atovaquone , Mosquito Vectors , Antiviral Agents/pharmacology
5.
Microbiol Spectr ; : e0519522, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37540021

ABSTRACT

Aedes aegypti mosquitoes can transmit several arboviruses, including chikungunya virus (CHIKV), dengue virus (DENV), and Zika virus (ZIKV). When blood-feeding on a virus-infected human, the mosquito ingests the virus into the midgut (stomach), where it replicates and must overcome the midgut barrier to disseminate to other organs and ultimately be transmitted via the saliva. Current tools to study mosquito-borne viruses (MBVs) include 2D-cell culture systems and in vivo mosquito infection models, which offer great advantages, yet have some limitations. Here, we describe a long-term ex vivo culture of Ae. aegypti guts. Cultured guts were metabolically active for 7 d in a 96-well plate at 28°C and were permissive to ZIKV, DENV, Ross River virus, and CHIKV. Ex vivo guts from Culex pipiens mosquitoes were found to be permissive to Usutu virus. Immunofluorescence staining confirmed viral protein synthesis in CHIKV-infected guts of Ae. aegypti. Furthermore, fluorescence microscopy revealed replication and spread of a reporter DENV in specific regions of the midgut. In addition, two known antiviral molecules, ß-d-N4-hydroxycytidine and 7-deaza-2'-C-methyladenosine, were able to inhibit CHIKV and ZIKV replication, respectively, in the ex vivo model. Together, our results show that ex vivo guts can be efficiently infected with mosquito-borne alpha- and flaviviruses and employed to evaluate antiviral drugs. Furthermore, the setup can be extended to other mosquito species. Ex vivo gut cultures could thus be a new model to study MBVs, offering the advantage of reduced biosafety measures compared to infecting living mosquitoes. IMPORTANCE Mosquito-borne viruses (MBVs) are a significant global health threat since they can cause severe diseases in humans, such as hemorrhagic fever, encephalitis, and chronic arthritis. MBVs rely on the mosquito vector to infect new hosts and perpetuate virus transmission. No therapeutics are currently available. The study of arbovirus infection in the mosquito vector can greatly contribute to elucidating strategies for controlling arbovirus transmission. This work investigated the infection of guts from Aedes aegypti mosquitoes in an ex vivo platform. We found several MBVs capable of replicating in the gut tissue, including viruses of major health importance, such as dengue, chikungunya, and Zika viruses. In addition, antiviral compounds reduced arbovirus infection in the cultured gut tissue. Overall, the gut model emerges as a useful tool for diverse applications such as studying tissue-specific responses to virus infection and screening potential anti-arboviral molecules.

6.
mBio ; 13(5): e0102122, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069449

ABSTRACT

Mosquitoes are important vectors for many arboviruses. It is becoming increasingly clear that various symbiotic microorganisms (including bacteria and insect-specific viruses; ISVs) in mosquitoes have the potential to modulate the ability of mosquitoes to transmit arboviruses. In this study, we compared the bacteriome and virome (both eukaryotic viruses and bacteriophages) of female adult Aedes aegypti and Culex quinquefasciatus mosquitoes fed with sucrose/water, blood, or blood spiked with Zika virus (ZIKV) or West Nile virus (WNV), respectively. Furthermore, we investigated associations between the microbiota and vector competence. We show that the influence of arboviruses on the mosquito microbiome-and vice versa-is distinct for each combination of arbovirus/mosquito species. The presence of ZIKV resulted in a temporarily increased Aedes ISV diversity. However, this effect was distinct for different ISVs: some ISVs decreased following the blood meal (Aedes aegypti totivirus), whereas other ISVs increased only when the blood contained ZIKV (Guadeloupe mosquito virus). Also, the diversity of the Aedes bacteriome depended on the diet and the presence of ZIKV, with a lower diversity observed for mosquitoes receiving blood without ZIKV. In Cx. quinquefasciatus, some ISVs increased in WNV-infected mosquitoes (Guadeloupe Culex tymo-like virus). Particularly, the presence of Wenzhou sobemo-like virus 3 (WSLV3) was associated with the absence of infectious WNV in mosquito heads, suggesting that WSLV3 might affect vector competence for WNV. Distinct profiles of bacteriophages were identified in Culex mosquitoes depending on diet, despite the lack of clear changes in the bacteriome. Overall, our data demonstrate a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. A better understanding of these interactions may lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures. IMPORTANCE In this study, we first utilized the single mosquito microbiome analysis, demonstrating a complex three-way interaction among arboviruses, resident microbiota, and the host, which is distinct for different arbovirus-mosquito combinations. Some of the previously described "core virus" increased in the mosquitos receiving viral blood meal, like Guadeloupe mosquito virus and Guadeloupe Culex tymo-like virus, suggesting their potential roles in ZIKV and WNV infection. Notably, Wenzhou sobemo-like virus 3 was associated with the absence of infectious WNV in heads of Culex mosquitoes, which might affect vector competence for WNV. A better understanding of these interactions will lead to the identification of microbiota able to suppress the ability of arbovirus transmission to humans, and hence improved arbovirus control measures.


Subject(s)
Aedes , Arboviruses , Culex , Microbiota , Viruses , West Nile virus , Zika Virus Infection , Zika Virus , Humans , Animals , Female , Mosquito Vectors , Bacteria , Sucrose , Water
7.
J Med Entomol ; 59(6): 2072-2079, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36130161

ABSTRACT

The emergence of West Nile virus and Usutu virus in Europe poses a significant risk to public health. In the absence of efficient antiviral therapy or vaccine candidates, the only strategy to control these arboviruses is to target the Culex (Diptera: Culicidae) mosquito vector. However, the selection pressure caused by exposure to insecticides for vector control or agricultural pest control can lead to insecticide resistance, thereby reducing the efficacy of insecticide-based vector control interventions. In Culex mosquitoes, two of the most common amino acid substitutions associated with insecticide resistance are the kdr L1014F in voltage gated sodium channels and G119S in acetylcholinesterase. In this study, Culex pipiens biotype pipiens, Culex torrentium, and Culex modestus were sampled from 2019 to 2021 in three distinct environmental habitats (urban, peri-urban, and agricultural) in and around the city of Leuven, Belgium. Individual mosquitoes were screened for two mutations resulting in L1014F and G119S amino acid substitutions. Both mutations were observed in Cx. pipiens and Cx. modestus but not in Cx. torrentium mosquitoes across the four collection sites. Furthermore, multi-resistance or cross-resistance in Cx. pipiens could be a threat in these areas, as both mutations were observed at low frequencies. These results provide the first report of kdr L1014F and ace-1 G119S resistance mutations in Cx. pipiens and Cx. modestus mosquitoes from Belgium, highlighting the importance of mosquito surveillance to design effective arbovirus outbreak control strategies.


Subject(s)
Culex , Culicidae , Insecticides , Pyrethrins , Animals , Pyrethrins/pharmacology , Belgium , Organophosphates/pharmacology , Acetylcholinesterase/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Mosquito Vectors/genetics , Mutation
8.
Med Vet Entomol ; 36(4): 486-495, 2022 12.
Article in English | MEDLINE | ID: mdl-35762523

ABSTRACT

The urban mosquito species Aedes aegypti is the main vector of arboviruses worldwide. Mosquito control with insecticides is the most prevalent method for preventing transmission in the absence of effective vaccines and available treatments; however, the extensive use of insecticides has led to the development of resistance in mosquito populations throughout the world, and the number of epidemics caused by arboviruses has increased. Three mosquito lines with different resistance profiles to deltamethrin were isolated in French Guiana, including one with the I1016 knock-down resistant allele. Significant differences were observed in the cumulative proportion of mosquitoes with a disseminated chikungunya virus infection over time across these lines. In addition, some genes related to resistance (CYP6BB2, CYP6N12, GST2, trypsin) were variably overexpressed in the midgut at 7 days after an infectious bloodmeal in these three lines. Our work shows that vector competence for chikungunya virus varied between Ae. aegypti laboratory lines with different deltamethrin resistance profiles. More accurate verification of the functional association between insecticide resistance and vector competence remains to be demonstrated.


Subject(s)
Aedes , Arboviruses , Chikungunya virus , Insecticides , Animals , Insecticides/pharmacology , Mosquito Vectors , Insecticide Resistance/genetics
9.
Mol Ther Methods Clin Dev ; 25: 215-224, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35313504

ABSTRACT

New platforms are needed for the design of novel prophylactic vaccines and advanced immune therapies. Live-attenuated yellow fever vaccine YF17D serves as a vector for several licensed vaccines and platform for novel candidates. On the basis of YF17D, we developed an exceptionally potent COVID-19 vaccine candidate called YF-S0. However, use of such live RNA viruses raises safety concerns, such as adverse events linked to original YF17D (yellow fever vaccine-associated neurotropic disease [YEL-AND] and yellow fever vaccine-associated viscerotropic disease [YEL-AVD]). In this study, we investigated the biodistribution and shedding of YF-S0 in hamsters. Likewise, we introduced hamsters deficient in signal transducer and activator of transcription 2 (STAT2) signaling as a new preclinical model of YEL-AND/AVD. Compared with YF17D, YF-S0 showed improved safety with limited dissemination to brain and visceral tissues, absent or low viremia, and no shedding of infectious virus. Considering that yellow fever virus is transmitted by Aedes mosquitoes, any inadvertent exposure to the live recombinant vector via mosquito bites is to be excluded. The transmission risk of YF-S0 was hence compared with readily transmitting YF-Asibi strain and non-transmitting YF17D vaccine, with no evidence for productive infection of mosquitoes. The overall favorable safety profile of YF-S0 is expected to translate to other vaccines based on the same YF17D platform.

10.
Microorganisms ; 9(5)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925738

ABSTRACT

Favipiravir (T-705) is a broad-spectrum antiviral drug that inhibits RNA viruses after intracellular conversion into its active form, T-705 ribofuranosyl 5'-triphosphate. We previously showed that T-705 is able to significantly inhibit the replication of chikungunya virus (CHIKV), an arbovirus transmitted by Aedes mosquitoes, in mammalian cells and in mouse models. In contrast, the effect of T-705 on CHIKV infection and replication in the mosquito vector is unknown. Since the antiviral activity of T-705 has been shown to be cell line-dependent, we studied here its antiviral efficacy in Aedes-derived mosquito cells and in Aedes aegypti mosquitoes. Interestingly, T-705 was devoid of anti-CHIKV activity in mosquito cells, despite being effective against CHIKV in Vero cells. By investigating the metabolic activation profile, we showed that, unlike Vero cells, mosquito cells were not able to convert T-705 into its active form. To explore whether alternative metabolization pathways might exist in vivo, Aedes aegypti mosquitoes were infected with CHIKV and administered T-705 via an artificial blood meal. Virus titrations of whole mosquitoes showed that T-705 was not able to reduce CHIKV infection in mosquitoes. Combined, these in vitro and in vivo data indicate that T-705 lacks antiviral activity in mosquitoes due to inadequate metabolic activation in this animal species.

11.
mSphere ; 6(2)2021 04 21.
Article in English | MEDLINE | ID: mdl-33883261

ABSTRACT

Culex modestus mosquitoes are considered potential transmission vectors of West Nile virus and Usutu virus. Their presence has been reported across several European countries, including one larva detected in Belgium in 2018. In this study, mosquitoes were collected in the city of Leuven and surrounding areas in the summers of 2019 and 2020. Species identification was performed based on morphological features and partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene. The 107 mosquitoes collected in 2019 belonged to eight mosquito species, Culex pipiens (24.3%), Cx. modestus (48.6%), Cx. torrentium (0.9%), Culiseta annulata (0.9%), Culiseta morsitans (0.9%), Aedes sticticus (14.0%), Aedes cinereus (9.3%), and Anopheles plumbeus (0.9%), suggesting the presence of an established Cx. modestus population in Belgium. The collection of Cx. modestus mosquitoes at the same locations in 2020 confirmed their establishment in the region. Haplotype network analysis of the COI sequences for Cx. modestus showed that the Belgian population is rather diverse, suggesting that it may have been established in Belgium for some time. The Belgian Cx. modestus population was most closely related to populations from the United Kingdom and Germany. Characterization of the virome of the collected mosquitoes resulted in the identification of at least 33 eukaryotic viral species. Nine (nearly) complete genomes belonging to 6 viral species were identified, all of which were closely related to known viruses. In conclusion, here, we report the presence of Cx. modestus in the surrounding areas of Leuven, Belgium. As this species is considered to be a vector of several arboviruses, the implementation of vector surveillance programs to monitor this species is recommended.IMPORTANCECulex modestus mosquitoes are considered to be a potential "bridge" vector, being able to transmit pathogens between birds as well as from birds to mammals, including humans. In Belgium, this mosquito species was considered absent until the finding of one larva in 2018 and subsequent evidence of a large population in 2019 to 2020 described here. We collected mosquitoes in the summers of 2019 and 2020 in the city of Leuven and surrounding areas. The mosquito species was identified by morphological and molecular methods, demonstrating the presence of Cx. modestus in this region. The ability of mosquitoes to transmit pathogens can depend on several factors, one of them being their natural virus composition. Therefore, we identified the mosquito-specific viruses harbored by Belgian mosquitoes. As Cx. modestus is able to transmit viruses such as West Nile virus and Usutu virus, the establishment of this mosquito species may increase the risk of virus transmission in the region. It is thus advisable to implement mosquito surveillance programs to monitor this species.


Subject(s)
Culex/virology , Mosquito Vectors/virology , Virome/genetics , Viruses/genetics , Animals , Belgium , Culex/classification , Flavivirus/physiology , Seasons , Viruses/classification , Viruses/isolation & purification , West Nile virus/physiology
12.
PLoS One ; 16(1): e0243992, 2021.
Article in English | MEDLINE | ID: mdl-33428654

ABSTRACT

Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.


Subject(s)
Aedes/metabolism , Cytochrome P-450 Enzyme System/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Voltage-Gated Sodium Channels/genetics , Aedes/drug effects , Aedes/genetics , Animals , Esterases/metabolism , Female , French Guiana , Gene Knockdown Techniques , Genotype , Inactivation, Metabolic/genetics , Insect Proteins/antagonists & inhibitors , Insect Proteins/metabolism , Insecticides/pharmacology , Intestinal Mucosa/metabolism , Nitriles/pharmacology , Oligonucleotides/metabolism , Polymorphism, Single Nucleotide , Proteome/analysis , Proteomics , Pyrethrins/pharmacology , Voltage-Gated Sodium Channels/chemistry , Voltage-Gated Sodium Channels/metabolism
13.
Nat Commun ; 11(1): 5838, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203860

ABSTRACT

Emergence of SARS-CoV-2 causing COVID-19 has resulted in hundreds of thousands of deaths. In search for key targets of effective therapeutics, robust animal models mimicking COVID-19 in humans are urgently needed. Here, we show that Syrian hamsters, in contrast to mice, are highly permissive to SARS-CoV-2 and develop bronchopneumonia and strong inflammatory responses in the lungs with neutrophil infiltration and edema, further confirmed as consolidations visualized by micro-CT alike in clinical practice. Moreover, we identify an exuberant innate immune response as key player in pathogenesis, in which STAT2 signaling plays a dual role, driving severe lung injury on the one hand, yet restricting systemic virus dissemination on the other. Our results reveal the importance of STAT2-dependent interferon responses in the pathogenesis and virus control during SARS-CoV-2 infection and may help rationalizing new strategies for the treatment of COVID-19 patients.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/pathology , Coronavirus Infections/virology , Disease Models, Animal , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , STAT2 Transcription Factor/metabolism , Signal Transduction , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Cricetinae , Immunity, Innate , Interferon Type I/genetics , Interferon Type I/metabolism , Lung/pathology , Lung/virology , Mice , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , SARS-CoV-2 , STAT2 Transcription Factor/genetics , Virus Replication
14.
Viruses ; 12(9)2020 08 31.
Article in English | MEDLINE | ID: mdl-32878245

ABSTRACT

Arthropod-borne viruses contribute significantly to global mortality and morbidity in humans and animals. These viruses are mainly transmitted between susceptible vertebrate hosts by hematophagous arthropod vectors, especially mosquitoes. Recently, there has been substantial attention for a novel group of viruses, referred to as insect-specific viruses (ISVs) which are exclusively maintained in mosquito populations. Recent discoveries of novel insect-specific viruses over the past years generated a great interest not only in their potential use as vaccine and diagnostic platforms but also as novel biological control agents due to their ability to modulate arbovirus transmission. While arboviruses infect both vertebrate and invertebrate hosts, the replication of insect-specific viruses is restricted in vertebrates at multiple stages of virus replication. The vertebrate restriction factors include the genetic elements of ISVs (structural and non-structural genes and the untranslated terminal regions), vertebrate host factors (agonists and antagonists), and the temperature-dependent microenvironment. A better understanding of these bottlenecks is thus warranted. In this review, we explore these factors and the complex interplay between ISVs and their hosts contributing to this host restriction phenomenon.


Subject(s)
Arboviruses/physiology , Arthropods/virology , Insect Viruses/physiology , Virus Diseases/virology , Animals , Arboviruses/classification , Arboviruses/genetics , Arboviruses/isolation & purification , Arthropods/classification , Arthropods/physiology , Host Specificity , Humans , Insect Viruses/classification , Insect Viruses/genetics , Insect Viruses/isolation & purification , Virus Diseases/transmission
15.
Mem Inst Oswaldo Cruz ; 113(5): e170398, 2018 Mar 12.
Article in English | MEDLINE | ID: mdl-29538490

ABSTRACT

Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.


Subject(s)
Culicidae , Insecticides , Mosquito Control/methods , Mosquito Vectors , Animals , Chikungunya Fever/transmission , Culicidae/classification , Dengue/transmission , French Guiana , Health Education , Humans , Malaria/transmission , Mosquito Vectors/classification , Yellow Fever/transmission , Zika Virus Infection/transmission
16.
Mem. Inst. Oswaldo Cruz ; 113(5): e170398, 2018. graf
Article in English | LILACS | ID: biblio-894919

ABSTRACT

Since the 1940s, French Guiana has implemented vector control to contain or eliminate malaria, yellow fever, and, recently, dengue, chikungunya, and Zika. Over time, strategies have evolved depending on the location, efficacy of the methods, development of insecticide resistance, and advances in vector control techniques. This review summarises the history of vector control in French Guiana by reporting the records found in the private archives of the Institute Pasteur in French Guiana and those accessible in libraries worldwide. This publication highlights successes and failures in vector control and identifies the constraints and expectations for vector control in this French overseas territory in the Americas.


Subject(s)
Humans , Chikungunya Fever/transmission , Zika Virus Infection/therapy , Mosquito Vectors/classification
SELECTION OF CITATIONS
SEARCH DETAIL
...