Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38578884

ABSTRACT

Myocardial infarction refers to the ischemic necrosis of myocardium, characterized by a sharp reduction or interruption of blood flow in the coronary arteries due to the coronary artery occlusion, resulting in severe and prolonged ischemia in the corresponding myocardium and ultimately leading to ischemic necrosis of the myocardium. Given its high risk, it is considered as one of the most serious health threats today. In current clinical practice, multiple approaches have been explored to diminish myocardial oxygen consumption and alleviate symptoms, but notable success remains elusive. Accumulated clinical evidence has showed that the implantation of mesenchymal stem cell for treating myocardial infarction is both effective and safe. Nevertheless, there persists controversy and variability regarding the standardizing MSC transplantation protocols, optimizing dosage, and determining the most effective routes of administration. Addressing these remaining issues will pave the way of integration of MSCs as a feasible mainstream cardiac treatment.

2.
Food Chem ; 414: 135718, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-36827783

ABSTRACT

Although protein-polysaccharide complexes have shown tremendous potential in stabilizing high internal phase Pickering emulsions (HIPPEs), it is unclear whether coacervates have the same potential to be used as effective Pickering stabilizers. In this study, HIPPEs were prepared by ovalbumin (OVA)-pectin (PE) coacervates during the transition from coacervates to complexes. The results showed that enhanced OVA-PE interactions significantly affected the wettability and surface-tension reduction ability of the OVA-PE coacervates. At pH 2, the coacervate-stabilized HIPPEs exhibited smaller oil droplet sizes (21.3±2.3 µm), tighter droplet packing, and finer solid-like structures through the bridging of droplets and the generation of stronger gel-like network structures to prevent coalescence and lipid oxidation. The gastrointestinal digestion results proved that the OVA-PE coacervates promoted lipid hydrolysis and improved the bioaccessibility (from 19.7±0.7% to 36.5±2%) of curcumin-loaded HIPPEs. Our work provides new ideas for the development of biopolymer particles as effective Pickering stabilizers in the food industry.


Subject(s)
Food , Pectins , Emulsions/chemistry , Particle Size , Lipids/chemistry , Digestion
3.
Food Chem ; 402: 134512, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36303394

ABSTRACT

In this work, the heat-induced ovalbumin (OVA)-pectin (PE) electrostatic complex particles (HIECP) prepared by different heating sequences (type I particles (I): Heat-treated ovalbumin/pectin complexes at pH 4; type II particles (II): Complexes between pre-heated ovalbumin and pectin at pH 4) and biopolymer ratios were used as stabilizers to form high internal phase Pickering emulsions (HIPPEs). The results showed that I had a more compact structure, higher net surface charge, and smaller particle size than II, due to the different growth nucleation mechanism. II-stabilized HIPPEs exhibited a smaller oil droplet size, stronger gel structure, and better stability than I-stabilized HIPPEs, owing to their suitable wettability, rigid "core-shell" structure, and robust and dense interface architecture. Moreover, the stability and gel-like structure of HIECP-stabilized HIPPEs improved with increasing PE content due to steric barrier and thickening effects. Our findings provide a new perspective for understanding heat-induced biopolymer particles as effective Pickering stabilizers.


Subject(s)
Hot Temperature , Pectins , Emulsions/chemistry , Static Electricity , Ovalbumin , Particle Size
4.
Food Chem ; 389: 133055, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35489261

ABSTRACT

In this study, ovalbumin (OVA) interacted with pectin (PE) to form soluble electrostatic complexes to improve the functional properties of high internal phase Pickering emulsions (HIPEs) under extreme conditions. The results showed that the stability of the OVA-PE soluble complexes-stabilized HIPEs was significantly better than that of the free OVA-stabilized HIPEs and was modulated by the biopolymer ratio. In particular, the complexes at an OVA:PE ratio of 1:1 (C-1:1) may form particulates with a core-shell structure by a flocculation mechanism. The C-1:1-stabilized HIPEs had the smallest oil droplet size (11.34 ± 1.14 µm) and the best resistance to extreme environmental stresses due to their strong, rigid structure and dense interfacial architecture. The in vitro digestion results showed that the bioaccessibility (from 18.3% ± 0.5% to 38.8% ± 4.8%) of curcumin improved with increasing PE content. Our work is helpful in understanding OVA-PE complexes as stabilizers for HIPEs and their potential applications in food delivery systems.


Subject(s)
Curcumin , Curcumin/chemistry , Emulsions/chemistry , Ovalbumin , Particle Size , Pectins
5.
Foods ; 10(8)2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34441574

ABSTRACT

Plasticizers and the water migration of edible protein films during storage can result in changes in film properties, while specific changing processes need to be further explored. In this study, glycerol-plasticized soy protein isolate (SPI) films were stored at 25 °C, 4 °C, and -18 °C for 6 weeks (relative humidity (RH), 40-50%). The glycerol migration was monitored by the glycerol migration rate and differential scanning calorimetry (DSC). Water content, low-field nuclear magnetic resonance (LF-NMR), and thermogravimetric analysis (TGA) were used to analyze the water state. The results showed that significant pores and cracks were observed after storage at 25 °C. The proportion of bound water gradually increased, and the glycerol migration rate also reached 1.3% and 0.7% at 25 °C and 4 °C, respectively. The results proved that increasing the storage temperature accelerated the loss of water and glycerol, and decreased the mechanical properties of the SPI film.

SELECTION OF CITATIONS
SEARCH DETAIL
...