Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.771
Filter
1.
Angew Chem Int Ed Engl ; : e202408189, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774981

ABSTRACT

Two-dimensional conjugated metal-organic frameworks (2D c-MOFs) have emerged as promising candidates in gas sensing, owing to their tunable porous structure and conductivity. Nevertheless, the reported gas sensing mechanisms heavily relied on electron transfer between metal nodes and gas molecules. Normally, the strong interaction between the metal sites and target gas molecule would result poor recovery and thus bad recycling property. Herein, we propose a redox synergy strategy to overcome this issue by balancing the reactivity of metal sites and ligands. A 2D c-MOF, Zn3(HHTQ)2, was prepared for nitrogen dioxide (NO2) sensing, which was constructed from active ligands (hexahydroxyl-tricycloquinazoline, HHTQ) and inactive transition-metal ions (Zn2+). Substantial characterizations and theoretical calculations demonstrated that by utilizing only the redox interactions between ligands and NO2, not only high sensitivity and selectivity, but also excellent cycling stability in NO2 sensing could be achieved. In contrast, control experiments employing isostructural 2D c-MOFs with Cu/Ni metal nodes exhibited irreversible NO2 sensing. Our current work provides a new design strategy for gas sensing materials, emphasizing harnessing the redox activity of only ligands to enhance the stability of MOF sensing materials.

2.
Tree Physiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775231

ABSTRACT

Plant biomass is a highly promising renewable feedstock for the production of biofuels, chemicals, and materials. By enhancing the content of plant biomass through endophyte symbiosis, it can effectively reduce economic and technological barriers in industrial production. In this study, we found that symbiosis with the dark septate endophyte (DSE) Anteaglonium sp. T010 significantly promoted the growth of poplar trees and increased plant biomass, including cellulose, lignin and starch. To further investigate whether plant biomass was related to sucrose metabolism, we analyzed the levels of relevant sugars and enzyme activities. During the symbiosis of Anteaglonium sp. T010, sucrose, fructose and glucose levels in the stem of poplar decreased, while the content of intermediates such as glucose-6-phosphate (G6P), fructose-6-phosphate (F6P) and UDP-glucose (UDPG) and the activity of enzymes related to sucrose metabolism, including sucrose synthase (SUSY), cell wall invertase (CWINV), fructokinase (FRK) and hexokinase (HxK), increased. In addition, the contents of glucose, fructose, starch and their intermediates G6P, F6P and UDPG, as well as the enzyme activities of SUSY, CWINV, neutral invertase (NINV) and FRK in roots were increased, which ultimately led to the increase of root biomass. Besides that, during the symbiotic process of Anteaglonium sp. T010, there were significant changes in the expression levels of root-related hormones, which may promote changes in sucrose metabolism and consequently increase the plant biomass. Therefore, this study suggested that DSE fungi can increase the plant biomass synthesis capacity by regulating the carbohydrate allocation and sink strength in poplar.

3.
Arch Dermatol Res ; 316(5): 190, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775976

ABSTRACT

Hair is a biofilament with unique multi-dimensional values. In human, in addition to physiologic impacts, hair loss and hair related disorders can affect characteristic features, emotions, and social behaviors. Despite significant advancement, there is a dire need to explore alternative novel therapies with higher efficacy, less side effects and lower cost to promote hair growth to treat hair deficiency. Glucocorticoid-induced leucine zipper (GILZ) is a protein rapidly induced by glucocorticoids. Studies from our group and many others have suggested that a synthetic form of GILZ, TAT-GILZ, a fusion peptide of trans-activator of transcription and GILZ, can function as a potent regulator of inflammatory responses, re-establishing and maintaining the homeostasis. In this study, we investigate whether TAT-GILZ could promote and contribute to hair growth. For our pre-clinical model, we used 9-12 week-old male BALB/c and nude (athymic, nu/J) mice. We applied TAT-GILZ and/or TAT (vehicle) intradermally to depilated/hairless mice. Direct observation, histological examination, and Immunofluorescence imaging were used to assess the effects and compare different treatments. In addition, we tested two current treatment for hair loss/growth, finasteride and minoxidil, for optimal evaluation of TAT-GILZ in a comparative fashion. Our results showed, for the first time, that synthetic TAT-GILZ peptide accelerated hair growth on depilated dorsal skin of BALB/c and induced hair on the skin of athymic mice where hair growth was not expected. In addition, TAT-GILZ was able to enhance hair follicle stem cells and re-established the homeostasis by increasing counter inflammatory signals including higher regulatory T cells and glucocorticoid receptors. In conclusion, our novel findings suggest that reprofiling synthetic TAT-GILZ peptide could promote hair growth by increasing hair follicle stem cells and re-establishing homeostasis.


Subject(s)
Alopecia , Hair Follicle , Hair , Transcription Factors , Animals , Male , Mice , Hair/growth & development , Hair/drug effects , Hair Follicle/drug effects , Hair Follicle/growth & development , Humans , Alopecia/drug therapy , Transcription Factors/genetics , Transcription Factors/metabolism , Mice, Inbred BALB C , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/administration & dosage , Mice, Nude , Mice, Hairless , Disease Models, Animal , Glucocorticoids/pharmacology
4.
RSC Adv ; 14(21): 15031-15038, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38720968

ABSTRACT

The biological treatment of wastewater generates a substantial amount of waste sludge that requires dewatering before final disposal. Efficient sludge dewatering is essential to minimize storage and transportation costs. In this study, the sludge conditioners polydimethyldiallylammonium chloride (PDMDAAC) and ferric chloride (FeCl3) were sequentially dosed, and the pH was adjusted to 3. As a result, the sludge moisture content (MC) was reduced to 59.4%, achieving deep dewatering. After conditioning, the tightly bound extracellular polymeric substances (TB-EPS) were reduced from 34.5 to 10.2 mg g-1 VSS, with the majority of the reduced fractions being composed of protein (PN). In contrast, soluble EPS increased more than 8 times. Subsequent studies revealed that the decrease in PN from TB-EPS primarily involved tryptophan and tyrosine proteins, accompanied by a significant reduction in the N-H and C[double bond, length as m-dash]C absorption peaks. These results highlight the critical role of TB-EPS dissolution in achieving deep dehydration, with the N-H in PN was identified as the key group influencing sludge dewatering. Combined with the changes in sludge particle size and morphology, the dewatering mechanism can be summarized as follows: PDMDAAC dissolves TB-EPS, simultaneously disrupting the floc structure and refining the sludge. Subsequently, FeCl3 reconstructs these elements, forming larger particle sizes. Finally, hydrochloric acid reduces TB-EPS once again, releasing bound water. This study offers alternative methods and new insights for achieving deep dewatering of waste sludge.

5.
Small ; : e2400244, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38721969

ABSTRACT

Practical applications of the hydrogen evolution reaction (HER) rely on the development of highly efficient, stable, and low-cost catalysts. Tuning the electronic structure, morphology, and architecture of catalysts is an important way to realize efficient and stable HER electrocatalysts. Herein, Co-doped Cu3P-based sugar-gourd structures (Co─Cu3P/CF) are prepared on copper foam as active electrocatalysts for hydrogen evolution. This hierarchical structure facilitates fast mass transport during electrocatalysis. Notably, the introduction of Co not only induces a charge redistribution but also leads to lattice-mismatch on the atomic scale, which creates defects and performs as additional active sites. Therefore, Co─Cu3P/CF requires an overpotential of only 81, 111, 185, and 230 mV to reach currents of 50, 100, 500, and 1000 mA cm-2 in alkaline media and remains stable after 10 000 CV cycles in a row and up to 110 h i-t stability tests. In addition, it also shows excellent HER performance in water/seawater electrolytes of different pH values. Experimental and DFT show that the introduction of Co modulates the electronic and energy level structures of the catalyst, optimizes the adsorption and desorption behavior of the intermediate, reduces the water dissociation energy barrier during the reaction, accelerates the Volmer step reaction, and thus improves the HER performance.

7.
Clin Exp Pharmacol Physiol ; 51(6): e13861, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38724488

ABSTRACT

Relevant studies have indicated the association of HCG18 with tumour occurrence and progression. In this study, we observed that PM2.5 can enhance the growth of lung adenocarcinoma cells by modulating the expression of HCG18. Further investigations, including overexpression and knockout experiments, elucidated that HCG18 suppresses miR-195, which in turn upregulates the expression of ATG14, resulting in the upregulation of autophagy. Consequently, exposure to PM2.5 leads to elevated HCG18 expression in lung tissues, which in turn increases Atg14 expression and activates autophagy pathways through inhibition of miR-195, thereby contributing to oncogenesis.


Subject(s)
Adenocarcinoma of Lung , Autophagy-Related Proteins , Autophagy , Disease Progression , Lung Neoplasms , MicroRNAs , Particulate Matter , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Particulate Matter/adverse effects , Autophagy/genetics , Gene Expression Regulation, Neoplastic , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism , Cell Proliferation/genetics , A549 Cells , Cell Line, Tumor , Adaptor Proteins, Vesicular Transport
8.
Int J Biol Macromol ; 270(Pt 1): 132292, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38750858

ABSTRACT

Expansins, cell wall proteins, play a significant role in plant stress resistance. Our previous study confirmed the expression of the expansin gene SmEXPA13 from Salix matsudana Koidz. enhanced salt tolerance of plants. This report presented an assay that the expression of SmEXPA13 was higher in the salt-resistant willow variety 9901 than in the salt-sensitive variety Yanjiang. In order to understand the possible reasons, a study of the regulation process was conducted. Despite being cloned from both varieties, SmEXPA13 and its promotor showed no significant differences in the structure and sequence. A transcription factor (TF), SmMYB1R1-L, identified through screening the yeast library of willow cDNA, was found to regulate SmEXPA13. Yeast one-hybrid (Y1H) assay confirmed that SmMYB1R1-L could bind to the MYB element at the -520 bp site on the SmEXPA13 promotor. A dual-luciferase reporter assay also demonstrated that SmMYB1R1-L could greatly activate SmEXPA13 expression. The willow calli with over-expression of SmMYB1R1-L exhibited better physiological performance than the wild type under salt stress. Further testing the expression of SmMYB1R1-L displayed it significantly higher in 9901 willow than that in Yanjiang under salt stress. In conclusion, the high accumulation of SmMYB1R1-L in 9901 willow under salt stress led to the high expression of SmEXPA13, resulting in variations in salt stress resistance among willow varieties. The SmMYB1R1-L/SmEXPA13 cascade module in willow offers a new perspective on plant resistance mechanisms.

9.
Food Chem ; 452: 139588, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38754168

ABSTRACT

In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of ß-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.

10.
J Ethnopharmacol ; : 118318, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754642

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Niaodukang mixture (NDK) is a preparation known for its ability to lower serum creatine levels in individuals with chronic kidney disease (CKD) and is commonly administered at medical facilities like the Zhongshan Hospital of Traditional Chinese Medicine. The initial use of NDK was mainly to treat CKD. Our hospital frequently utilizes NDK, which consists of Rheum officinaleBaill., Salvia miltiorrhiza Bunge., Astragalus aaronii(Eig) Zohary., Carthamus tinctorius L., and Sanguisorba officinalis L., for treating patients with CKD-MBD. It has the effects of eliminating dampness and turbidity and dredging kidney collaterals. However, The impact and process of NDK in chronic kidney disease remain unknown. AIM OF THE STUDY: To determine whether microRNA-146a (miR-146a) is associated with CKD micro-inflammationand whether NDK protects against CKD micro-inflammation by modulating the miR-146a/nuclear factor kappa-B (NF-κB) signaling pathway. MATERIALS AND METHODS: (1) An adenine-induced rat model of chronic kidney disease was created through the use of materials and methods. The levels of miR-146a in exosomes from plasma and ileum were determined by RT-PCR. (2) Human cloned colon adenocarcinoma (Caco-2)cellswere stimulated with lipopolysaccharide (LPS)and transfected with miR-146a mimic and inhibitor. Following that, the western blot and RT-PCR techniques were used to measure the protein and mRNA quantities of Toll-like receptor 4 (TLR4), NF-κB, and TNF receptor-associated factor 6 (TRAF6).(3) Enzyme-linked immunosorbent assay (ELISA) was used to identify serum levels of interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). (4) Plasma exosomes were extracted, and the exosomes in intestinal tissues were extracted via ultrahigh-speed centrifugation.Negative staining electron microscopy was used to analyze the morphology of exosomes and the ultrastructure of intestinal tissue and exosomes. The particle size of the exosomes was measured using nanoparticle tracking analysis. RESULTS: The pathological characteristics of CKD rats included those associated with systemic micro-inflammation, which may be associated with the release of exosomes in intestinal tissue. NDK suppressed the inflammatory response in Caco-2 cells and decreased the levels of IL-1ß, IL-6, and TNF-α in rats with CKD. The expression of miR-146a, which regulates inflammation, differed between plasma-derived and enterogenous exosomes in CKD rats, which may be due to stimulation of ileal exosome release into the blood. NDK effectively reduced the levels of TRAF6, NF-κB, and TLR4 in the ileum tissue of CKD rats. CONCLUSION: NDK can effectively improve micro-inflammation in CKD ratsby enhancing the release of enterogenous exosomes, thereby enhancing the release of exosome-associated miR-146a and inhibiting micro-inflammation.

11.
Animals (Basel) ; 14(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38731289

ABSTRACT

Probiotics have been proven to improve the growth performance of livestock and poultry. The aim of this experiment was to investigate the effects of probiotic supplementation on the growth performance; rumen and intestinal microbiota; rumen fluid, serum, and urine metabolism; and rumen epithelial cell transcriptomics of fattening meat sheep. Twelve Hu sheep were selected and randomly divided into two groups. They were fed a basal diet (CON) or a basal diet supplemented with 1.5 × 108 CFU/g probiotics (PRB). The results show that the average daily weight gain, and volatile fatty acid and serum antioxidant capacity concentrations of the PRB group were significantly higher than those of the CON group (p < 0.05). Compared to the CON group, the thickness of the rumen muscle layer in the PRB group was significantly decreased (p < 0.01); the thickness of the duodenal muscle layer in the fattening sheep was significantly reduced; and the length of the duodenal villi, the thickness of the cecal and rectal mucosal muscle layers, and the thickness of the cecal, colon, and rectal mucosal layers (p < 0.05) were significantly increased. At the genus level, the addition of probiotics altered the composition of the rumen and intestinal microbiota, significantly upregulating the relative abundance of Subdivision5_genera_incertae_sedis and Acinetobacter in the rumen microbiota, and significantly downregulating the relative abundance of Butyrivibrio, Saccharofermentans, and Fibrobacter. The relative abundance of faecalicoccus was significantly upregulated in the intestinal microbiota, while the relative abundance of Coprococcus, Porphyromonas, and Anaerobacterium were significantly downregulated (p < 0.05). There were significant differences in the rumen, serum, and urine metabolites between the PRB group and the CON group, with 188, 138, and 104 metabolites (p < 0.05), mainly affecting pathways such as vitamin B2, vitamin B3, vitamin B6, and a series of amino acid metabolisms. The differential genes in the transcriptome sequencing were mainly enriched in protein modification regulation (especially histone modification), immune function regulation, and energy metabolism. Therefore, adding probiotics improved the growth performance of fattening sheep by altering the rumen and intestinal microbiota; the rumen, serum, and urine metabolome; and the transcriptome.

13.
China CDC Wkly ; 6(16): 350-356, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38736468

ABSTRACT

Introduction: The current study aims to assess the performance of data mining techniques in detecting safety signals for adverse events following immunization (AEFI) using routinely obtained data in China. Four different methods for detecting vaccine safety signals were evaluated. Methods: The AEFI data from 2011 to 2015 was collected for our study. We analyzed the data using four different methods to detect signals: the proportional reporting ratio (PRR), reporting odds ratio (ROR), Bayesian confidence propagation neural network (BCPNN), and multi-item gamma Poisson shrinker (MGPS). Each method was evaluated at 1-3 thresholds for positivity. To assess the performance of these methods, we used the published signal rates as gold standards to determine the sensitivity and specificity. Results: The number of identified signals varied from 602 for PRR1 (with a threshold of 1) to 127 for MGPS1. When considering the common reactions as the reference standard, the sensitivity ranged from 0.9% for MGPS1/2 to 38.2% for PRR1/2, and the specificity ranged from 85.2% for PRR1 and ROR1 to 96.7% for MGPS1. When considering the rare reactions as the reference standard, PRR1, PRR2, ROR1, ROR2, and BCPNN exhibited the highest sensitivity (73.3%), while MGPS1 exhibited the highest specificity (96.9%). Discussion: For common reactions, the sensitivities were modest and the specificities were high. For rare reactions, both the sensitivities and specificities were high. Our study provides valuable insights into the selection of signal detection methods and thresholds for AEFI data in China.

14.
China CDC Wkly ; 6(16): 344-349, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38736467

ABSTRACT

Introduction: Detecting poliovirus infections proves to be highly challenging due to their asymptomatic nature and infectious potential, highlighting the crucial importance of effective detection methods in the context of polio eradication efforts. In many countries, including China, the primary approach for identifying polio outbreaks has been through acute flaccid paralysis (AFP) surveillance. In this study, we conducted an evaluation spanning three decades (1993-2022) to assess the effectiveness of AFP surveillance in China. Methods: Data on all AFP cases identified since 1993 and national-level AFP surveillance system quality indicators aligned with the World Health Organization (WHO) standards were collected for analysis. The quality indicators assess surveillance sensitivity, completeness, timeliness of detection notification, case investigation, and laboratory workup. Surveillance sensitivity is determined by the non-polio AFP (NPAFP) detection rate among children under 15 years of age. Results: Between 1993 and 2022, a total of 150,779 AFP cases were identified and reported. Within this pool, surveillance identified 95 cases of wild poliovirus (WPV) and 24 cases due to vaccine-derived poliovirus. From 1995 onwards, the detection rate of NPAFP cases consistently adhered to the WHO and national standards of ≥1 case per 100,000, falling between 1.38 and 2.76. Starting in 1997, all timeliness indicators consistently achieved the criteria of 80%, apart from the consistency in meeting standards set for the rate of positive specimens sent to the national laboratory. Conclusions: AFP surveillance has been instrumental in China's accomplishment of maintaining a polio-free status. The ongoing adherence to key performance indicators, ensuring sensitivity and prompt specimen collection, demonstrates that AFP surveillance is proficient in detecting poliovirus in China. As we move into the post-eradication phase, AFP surveillance remains crucial for the sustained absence of polioviruses in the long term.

15.
Mikrochim Acta ; 191(6): 297, 2024 05 06.
Article in English | MEDLINE | ID: mdl-38709347

ABSTRACT

A new detection platform based on a hydroxylated covalent organic framework (COF) integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was constructed and used for detecting adrenergic receptor agonists (ARAs) residues in milk. The hydroxylated COF was prepared by polymerization of tris(4-aminophenyl)amine and 1,3,5-tris(4-formyl-3-hydroxyphenyl)benzene and applied to solid-phase extraction (SPE) of ARAs. This hydroxylated COF was featured with hierarchical flower-like morphology, easy preparation, and copious active adsorption sites. The adsorption model fittings and molecular simulation were applied to explore the potential adsorption mechanism. This detection platform was suitable for detecting four α2- and five ß2-ARAs residues in milk. The linear ranges of the ARAs were from 0.25 to 50 µg·kg-1; the intra-day and the inter-day repeatability were in the range 2.9-7.9% and 2.0-10.1%, respectively. This work demonstrates this hydroxylated COF has great potential as SPE cartridge packing, and provides a new way to determine ARAs residues in milk.


Subject(s)
Milk , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Milk/chemistry , Animals , Tandem Mass Spectrometry/methods , Hydroxylation , Metal-Organic Frameworks/chemistry , Adsorption , Adrenergic Agonists/chemistry , Adrenergic Agonists/analysis , Limit of Detection , Cattle
16.
Plant Dis ; : PDIS10232058RE, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709560

ABSTRACT

Strategies for plant nutrient resource allocation under Meloidogyne spp. infection and different soil nutrient conditions are not well established. In response, the objectives of this research are to determine if increased vegetative growth of Solanum lycopersicon var. cerasiforme (cherry tomato) under high nutrition enhances resistance to M. incognita and whether adaptive strategies for growth, reproduction, and nutrient uptake by cherry tomato infected with M. incognita alter nutrient availability. The study was conducted under greenhouse conditions using high, medium, and low soil nutrient regimes. The research results indicate that the total biomass of cherry tomato was less in the presence of M. incognita infection under all three nutrient conditions, compared with plants grown in the absence of this nematode. However, the increase in the root/shoot ratio indicates that cherry tomato allocated more resources to belowground organs. Under the combined impacts of M. incognita infection and low or medium soil nutrition, the nitrogen content in root system tissues and the phosphorus content in shoot system tissues were increased to meet the nutrient requirements of galled root tissue and plant fruit production. It is suggested that plants increase the allocation of reproductive resources to fruits by improving phosphorus transportation to the aboveground reproductive tissues under low and medium nutrient conditions. Overall, the study highlights a significant impact of soil nutrient levels on the growth and resource allocation associated with M. incognita-infected cherry tomato. In response, soil nutrient management is another practice for reducing the impacts of plant-parasitic nematodes on crop production.

17.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38712046

ABSTRACT

Interleukin 2 (IL-2) is the first identified cytokine and its interaction with receptors has been known to shape the immune responses in many lymphoid or non-lymphoid tissues for more than four decades. Active T cells are the primary cellular source for IL-2 production and epithelial cells have never been considered the major cellular source of IL-2 under physiological conditions. It is, however, tempting to speculate that epithelial cells could potentially express IL-2 that regulates the intricate interactions between epithelial cells and lymphocytes. Datamining our recently published single-cell RNAseq in the mouse mammary gland identified IL-2 expression in mammary epithelial cells, which is induced by prolactin via the STAT5 signaling pathway. Furthermore, epithelial IL-2 plays a crucial role in maintaining the physiological functions of natural killer (NK) cells within the mammary glands. IL-2 deletion in the mammary epithelial cells leads to a significant reduction in the number and function of NK cells, which in turn results in defective immunosurveillance, expansion of luminal epithelial cells, and tumor development. Interestingly, T cells in the mammary glands are not changed, indicating the specific regulation of NK cells by epithelial IL-2 production. In agreement, we also found that human epithelial cells express IL-2 and NK cells express the highest level of IL2RB among all the immune cells. Here, we provide the first evidence that epithelial cells produce IL-2, which is critical for maintaining the physiological functions of NK cells in immunosurveillance.

18.
Microbiol Spectr ; : e0427823, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712967

ABSTRACT

Within the realm of Gram-negative bacteria, bacteriocins are secreted almost everywhere, and the most representative are colicin and pyocin, which are secreted by Escherichia coli and Pseudomonas aeruginosa, respectively. Signal peptides at the amino terminus of bacteriocins or ABC transporters can secrete bacteriocins, which then enter bacteria through cell membrane receptors and exert toxicity. In general, the bactericidal spectrum is usually narrow, killing only the kin or closely related species. Our previous research indicates that YPK_0952 is an effector of the third Type VI secretion system (T6SS-3) in Yersinia pseudotuberculosis. Next, we sought to determine its identity and characterize its toxicity. We found that YPK_0952 (a pyocin-like effector) can achieve intra-species and inter-species competitive advantages through both contact-dependent and contact-independent mechanisms mediated by the T6SS-3 while enhancing the intestinal colonization capacity of Y. pseudotuberculosis. We further identified YPK_0952 as a DNase dependent on Mg2+, Ni2+, Mn2+, and Co2+ bivalent metal ions, and the homologous immune protein YPK_0953 can inhibit its activity. In summary, YPK_0952 exerts toxicity by degrading nucleic acids from competing cells, and YPK_0953 prevents self-attack in Y. pseudotuberculosis.IMPORTANCEBacteriocins secreted by Gram-negative bacteria generally enter cells through specific interactions on the cell surface, resulting in a narrow bactericidal spectrum. First, we identified a new pyocin-like effector protein, YPK_0952, in the third Type VI secretion system (T6SS-3) of Yersinia pseudotuberculosis. YPK_0952 is secreted by T6SS-3 and can exert DNase activity through contact-dependent and contact-independent entry into nearby cells of the same and other species (e.g., Escherichia coli) to help Y. pseudotuberculosis to exert a competitive advantage and promote intestinal colonization. This discovery lays the foundation for an in-depth study of the different effector protein types within the T6SS and their complexity in competing interactions. At the same time, this study provides a new development for the toolbox of toxin/immune pairs for studying Gram-negative bacteriocin translocation.

19.
Med Oncol ; 41(6): 140, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713310

ABSTRACT

Glioblastoma (GBM) is an extremely aggressive primary brain tumor with poor prognosis, short survival time post-diagnosis and high recurrence. Currently, no cure for GBM exists. The identification of an effective therapeutic modality for GBM remains a high priority amongst medical professionals and researches. In recent studies, inhalant cannabidiol (CBD) has demonstrated promise in effectively inhibiting GBM tumor growth. However, exactly how CBD treatment affects the physiology of these tumor cells remains unclear. Stress granules (SG) (a sub-class of biomolecular condensates (BMC)) are dynamic, membrane-less intracellular microstructures which contain proteins and nucleic acids. The formation and signaling of SGs and BMCs plays a significant role in regulating malignancies. This study investigates whether inhaled CBD may play an intervening role towards SGs in GBM tumor cells. Integrated bioinformatics approaches were preformed to gain further insights. This includes use of Immunohistochemistry and flow cytometry to measure SGs, as well as expression and phosphorylation of eukaryotic initiation factor-2α (eIF2α). The findings of this study reveal that CBD receptors (and co-regulated genes) have the potential to play an important biological role in the formation of BMCs within GBM. In this experiment, CBD treatment significantly increased the volume of TIAR-1. This increase directly correlated with elevation in both eIF2α expression and p-eIF2α in CBD treated tissues in comparison to the placebo group (p < 0.05). These results suggest that inhalant CBD significantly up-regulated SGs in GBM, and thus support a theory of targeting BMCs as a potential therapeutic substrate for treating GBM.


Subject(s)
Brain Neoplasms , Cannabidiol , Glioblastoma , Glioblastoma/drug therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Cannabidiol/pharmacology , Humans , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Stress Granules/metabolism , Stress Granules/drug effects , Cell Line, Tumor , Eukaryotic Initiation Factor-2/metabolism
20.
J Colloid Interface Sci ; 669: 856-863, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38749224

ABSTRACT

Developing electrocatalysts with high activity and durability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in both acidic and alkaline electrolytes remains challenging. In this study, we synthesize a self-supported ruthenium-iron oxide on carbon cloth (Ru-Fe-Ox/CC) using solvothermal methods followed by air calcination. The morphology of the nanoparticle exposes numerous active sites vital for electrocatalysis. Additionally, the strong electronic interaction between Ru and Fe enhances electrocatalytic kinetics optimization. The porous structure of the carbon cloth matrix facilitates mass transport, improving electrolyte penetration and bubble release. Consequently, Ru-Fe-Ox/CC demonstrates excellent catalytic performance, achieving low overpotentials of 32 mV and 28 mV for HER and 216 mV and 228 mV for OER in acidic and alkaline electrolytes, respectively. Notably, only 1.48 V and 1.46 V are required to reach 10 mA cm-2 for efficient water-splitting in both mediums, exhibiting remarkable stability. This research offers insights into designing versatile, highly efficient catalysts suitable for varied pH conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...