Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.085
Filter
1.
FASEB J ; 38(11): e23717, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38837270

ABSTRACT

Selenoprotein I (Selenoi) is highly expressed in liver and plays a key role in lipid metabolism as a phosphatidylethanolamine (PE) synthase. However, the precise function of Selenoi in the liver remains elusive. In the study, we generated hepatocyte-specific Selenoi conditional knockout (cKO) mice on a high-fat diet to identify the physiological function of Selenoi. The cKO group exhibited a significant increase in body weight, with a 15.6% and 13.7% increase in fat accumulation in white adipose tissue (WAT) and the liver, respectively. Downregulation of the lipolysis-related protein (p-Hsl) and upregulation of the adipogenesis-related protein (Fasn) were observed in the liver of cKO mice. The cKO group also showed decreased oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure (p < .05). Moreover, various metabolites of the steroid hormone synthesis pathway were affected in the liver of cKO mice. A potential cascade of Selenoi-phosphatidylethanolamine-steroid hormone synthesis might serve as a core mechanism that links hepatocyte-specific Selenoi cKO to biochemical and molecular reactions. In conclusion, we revealed that Selenoi inhibits body fat accumulation and hepatic steatosis and elevates energy consumption; this protein could also be considered a therapeutic target for such related diseases.


Subject(s)
Fatty Liver , Hepatocytes , Mice, Knockout , Obesity , Animals , Mice , Obesity/metabolism , Obesity/genetics , Obesity/etiology , Hepatocytes/metabolism , Fatty Liver/metabolism , Fatty Liver/etiology , Fatty Liver/genetics , Fatty Liver/pathology , Selenoproteins/metabolism , Selenoproteins/genetics , Diet, High-Fat/adverse effects , Male , Liver/metabolism , Energy Metabolism , Lipid Metabolism , Mice, Inbred C57BL , Adipose Tissue, White/metabolism
2.
Acta Pharm Sin B ; 14(6): 2402-2427, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828146

ABSTRACT

Targeted protein degradation (TPD) represented by proteolysis targeting chimeras (PROTACs) marks a significant stride in drug discovery. A plethora of innovative technologies inspired by PROTAC have not only revolutionized the landscape of TPD but have the potential to unlock functionalities beyond degradation. Non-small-molecule-based approaches play an irreplaceable role in this field. A wide variety of agents spanning a broad chemical spectrum, including peptides, nucleic acids, antibodies, and even vaccines, which not only prove instrumental in overcoming the constraints of conventional small molecule entities but also provided rapidly renewing paradigms. Herein we summarize the burgeoning non-small molecule technological platforms inspired by PROTACs, including three major trajectories, to provide insights for the design strategies based on novel paradigms.

3.
Travel Med Infect Dis ; 60: 102724, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692338

ABSTRACT

BACKGROUND: Japanese encephalitis (JE) is a serious health concern in China, with approximately 80 % of global infections occurring in China. To develop effective prevention and control strategies, this study explored the epidemiological characteristics of JE in China based on spatiotemporal data, to understand the patterns and trends of JE incidence in different regions and time periods. METHOD: The incidence and mortality rates of JE were extracted from the Public Health Data Center, the official website of the National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System from 2004 to 2019. Joinpoint regression was applied to examine the spatiotemporal patterns and annual percentage change in incidence and mortality of the JE. RESULTS: From 2004 to 2019, a total of 43,569 cases of JE were diagnosed, including 2081 deaths. The annual incidence rate of JE decreased from 0.4171/100,000 in 2004 to 0.0298/100,000 in 2019, with an annual percentage change (APC) of -13.5 % (P < 0.001). The annual mortality rate of JE showed three stages of change, with inflection points in 2006 and 2014. The incidence and mortality rates of JE have declined in all provinces of China, and more cases were reported in 0-14 years of age, accounting for nearly 80 % of all patients. CONCLUSIONS: The morbidity and mortality rates of JE in China are generally on a downward trend, and emphasis should be placed on strengthening disease surveillance in special areas and populations, popularizing vaccination, and increasing publicity.

4.
FASEB J ; 38(10): e23667, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38742812

ABSTRACT

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Subject(s)
Colitis , Janus Kinase 2 , STAT3 Transcription Factor , Signal Transduction , T-Lymphocytes, Regulatory , Th17 Cells , Trinitrobenzenesulfonic Acid , Animals , Th17 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/metabolism , Janus Kinase 2/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , STAT3 Transcription Factor/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Mice , Signal Transduction/drug effects , Trinitrobenzenesulfonic Acid/toxicity , Male , Mice, Inbred BALB C , Cell Differentiation/drug effects
5.
PLoS Negl Trop Dis ; 18(5): e0012188, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805557

ABSTRACT

BACKGROUND: Angiostrongylus cantonensis is a parasite that mainly infects the heart and pulmonary arteries of rats and causes human eosinophilic meningitis or meningoencephalitis in certain geographical areas. Current diagnostic methods include detection of the parasite in cerebrospinal fluid (CSF) and eosinophilic immune examination after lumbar puncture, which may be risky and produce false-positive results. 18F- Fluorodeoxyglucose (FDG), a Positron emission tomography (PET) tracer, has been used to assess different pathological or inflammatory changes in the brains of patients. In this study, we hypothesized that A. cantonensis infection-induced inflammatory and immunomodulatory factors of eosinophils result in localized pathological changes in the brains of non-permissive hosts, which could be analyzed using in vivo 18F-FDG PET imaging. METHODOLOGY/FINDINGS: Non-permissive host ICR mice and permissive host SD rats were infected with A. cantonensis, and the effects of the resulting inflammation on 18F-FDG uptake were characterized using PET imaging. We also quantitatively measured the distributed uptake values of different brain regions to build an evaluated imaging model of localized neuropathological damage caused by eosinophilic inflammation. Our results showed that the uptake of 18F-FDG increased in the cerebellum, brainstem, and limbic system of mice at three weeks post-infection, whereas the uptake in the rat brain was not significant. Immunohistochemical staining and western blotting revealed that Iba-1, a microglia-specific marker, significantly increased in the hippocampus and its surrounding area in mice after three weeks of infection, and then became pronounced after four weeks of infection; while YM-1, an eosinophilic chemotactic factor, in the hippocampus and midbrain, increased significantly from two weeks post-infection, sharply escalated after three weeks of infection, and peaked after four weeks of infection. Cytometric bead array (CBA) analysis revealed that the expression of TNF in the serum of mice increased concomitantly with the prolongation of infection duration. Furthermore, IFN-γ and IL-4 in rat serum were significantly higher than in mouse serum at two weeks post-infection, indicating significantly different immune responses in the brains of rats and mice. We suggest that 18F-FDG uptake in the host brain may be attributed to the accumulation of large numbers of immune cells, especially the metabolic burst of activated eosinophils, which are attracted to and induced by activated microglia in the brain. CONCLUSIONS: An in vivo 18F-FDG/PET imaging model can be used to evaluate live neuroinflammatory pathological changes in the brains of A. cantonensis-infected mice and rats.

6.
Int J Cardiol Cardiovasc Risk Prev ; 21: 200286, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38813099

ABSTRACT

Background: Ventricular arrhythmias (VAs) mainly occur in the early post-myocardial infarction (MI) period. However, studies examining the association between total myocardial ischemia time interval and the risk of new-onset VAs during a long-term follow-up are scarce. Methods: This study (symptom-to-balloon time and VEntricular aRrhYthmias in patients with STEMI, VERY-STEMI study) was a multicenter, observational cohort and real-world study, which included patients with ST-segment elevation MI (STEMI) undergoing percutaneous coronary intervention (PCI). The primary endpoint was cumulative new-onset VAs during follow-up. The secondary endpoints were the major adverse cardiovascular events (MACE) and changes in left ventricular ejection fraction (ΔLVEF, %). Results: A total of 517 patients with STEMI were included and 236 primary endpoint events occurred. After multivariable adjustments, compared to patients with S2BT of 24 h-7d, those with S2BT ≤ 24 h and S2BT > 7d had a lower risk of primary endpoint. RCS showed an inverted U-shaped relationship between S2BT and the primary endpoint, with an S2BT of 68.4 h at the inflection point. Patients with S2BT ≤ 24 h were associated with a lower risk of MACE and a 4.44 increase in LVEF, while there was no significant difference in MACE and LVEF change between the S2BT > 7d group and S2BT of 24 h-7d group. Conclusions: S2BT of 24 h-7d in STEMI patients was associated with a higher risk of VAs during follow-up. There was an inverted U-shaped relationship between S2BT and VAs, with the highest risk at an S2BT of 68.4 h.

7.
Int Immunopharmacol ; 134: 112181, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38733829

ABSTRACT

BACKGROUND AND AIMS: Previous reports have shown that preventing excessive intestinal epithelial cell (IEC) apoptosis is a crucial approach for protecting the intestinal barrier in patients with Crohn's disease (CD). Magnolin (MGL) has various biological activities, including antiapoptotic activities, but its role in CD has largely not been determined. This study investigated how MGL impacts CD-like colitis and the underlying mechanism involved. METHODS: Mice were treated with TNBS to establish a disease model, and these mice were used to assess the therapeutic effects of MGL on CD-like colitis. TNF-α-treated colon organoids were used to evaluate the impact of MGL on intestinal barrier function and IEC apoptosis. Enrichment analysis was performed to examine the potential pathways through which MGL inhibits IEC apoptosis. Finally, rescue experiments showed the mechanism by which MGL suppresses IEC apoptosis. RESULTS: The animal experiments demonstrated that MGL treatment alleviated the weight loss, colon shortening, elevated disease activity index (DAI) scores, increased colitis histological scores and upregulated inflammatory factor expression that were observed in model mice. MGL ameliorated intestinal barrier dysfunction and the loss of tight junction (TJ) proteins (ZO-1 and Claudin-1) by inhibiting IEC apoptosis in both TNBS-treated mice and TNF-α-treated colon organoids. MGL inhibited the PI3K/AKT signalling pathway, thus safeguarding the intestinal barrier and alleviating CD-like colitis in vivo and in vitro. CONCLUSIONS: MGL improves the intestinal barrier integrity and prevents CD-like colitis by inhibiting IEC apoptosis. The potential mechanism of its anti-apoptotic impact on IECs could be associated with the PI3K/AKT pathway, presenting novel approaches and avenues for the clinical management of CD.


Subject(s)
Apoptosis , Colitis , Crohn Disease , Disease Models, Animal , Intestinal Mucosa , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , Apoptosis/drug effects , Crohn Disease/drug therapy , Crohn Disease/pathology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Mice , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Mice, Inbred C57BL , Epithelial Cells/drug effects , Male , Colon/pathology , Colon/drug effects
8.
Exp Dermatol ; 33(5): e15083, 2024 May.
Article in English | MEDLINE | ID: mdl-38794808

ABSTRACT

Interferons (IFNs) are signalling proteins primarily involved in initiating innate immune responses against pathogens and promoting the maturation of immune cells. Interferon Regulatory Factor 7 (IRF7) plays a pivotal role in the IFNs signalling pathway. The activation process of IRF7 is incited by exogenous or abnormal nucleic acids, which is followed by the identification via pattern recognition receptors (PRRs) and the ensuing signalling cascades. Upon activation, IRF7 modulates the expression of both IFNs and inflammatory gene regulation. As a multifunctional transcription factor, IRF7 is mainly expressed in immune cells, yet its presence is also detected in keratinocytes, fibroblasts, and various dermal cell types. In these cells, IRF7 is critical for skin immunity, inflammation, and fibrosis. IRF7 dysregulation may lead to autoimmune and inflammatory skin conditions, including systemic scleroderma (SSc), systemic lupus erythematosus (SLE), Atopic dermatitis (AD) and Psoriasis. This comprehensive review aims to extensively elucidate the role of IRF7 and its signalling pathways in immune cells and keratinocytes, highlighting its significance in skin-related and connective tissue diseases.


Subject(s)
Connective Tissue Diseases , Interferon Regulatory Factor-7 , Keratinocytes , Signal Transduction , Skin Diseases , Humans , Interferon Regulatory Factor-7/metabolism , Interferon Regulatory Factor-7/genetics , Skin Diseases/immunology , Skin Diseases/metabolism , Keratinocytes/metabolism , Keratinocytes/immunology , Connective Tissue Diseases/metabolism , Connective Tissue Diseases/immunology , Psoriasis/immunology , Psoriasis/metabolism , Animals , Skin/metabolism , Skin/immunology , Scleroderma, Systemic/metabolism , Scleroderma, Systemic/immunology , Scleroderma, Systemic/genetics , Immunity, Innate
9.
Int J Med Mushrooms ; 26(6): 1-12, 2024.
Article in English | MEDLINE | ID: mdl-38801084

ABSTRACT

The prevalence of diabetes is increasing worldwide, and it is very important to study new hypoglycemic active substances. In this study, we investigated the hypoglycemic effect of Chroogomphus rutilus crude polysaccharide (CRCP) in HepG2 cells and streptozotocin-induced diabetic mice. A glucose consumption experiment conducted in HepG2 cells demonstrated the in vitro hypoglycemic activity of CRCP. Furthermore, CRCP exhibited significant hypoglycemic effects and effectively ameliorated insulin resistance in insulin resistant HepG2 cells. In high-fat diet and streptozotocin-induced diabetic mice, after 4 weeks of CRCP administration, fasting blood glucose, fasting serum insulin, triglyceride, total cholesterol, low-density lipoprotein cholesterol, glutamate transaminase, alanine transaminase, and insulin resistance index significantly decreased, while high-density lipoprotein cholesterol and insulin sensitivity index (ISI) were markedly increased. Moreover, hematoxylin-eosin (HE) staining and immunofluorescence labeling of tissue sections indicated that CRCP attenuated the pathological damage of liver and pancreas in diabetic mice. These results indicate that CRCP is a potential hypoglycemic agent.


Subject(s)
Blood Glucose , Diabetes Mellitus, Experimental , Hypoglycemic Agents , Insulin Resistance , Polysaccharides , Animals , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Humans , Diabetes Mellitus, Experimental/drug therapy , Mice , Hep G2 Cells , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Liver/drug effects , Liver/metabolism , Diet, High-Fat/adverse effects , Insulin/blood , Insulin/metabolism , Pancreas/drug effects , Pancreas/pathology , Agaricales/chemistry , Fungal Polysaccharides/pharmacology , Fungal Polysaccharides/chemistry , Streptozocin
10.
Front Nutr ; 11: 1390256, 2024.
Article in English | MEDLINE | ID: mdl-38721034

ABSTRACT

Edible mushrooms are an important source of nutraceuticals and for the discovery of bioactive metabolites as pharmaceuticals. In this work, six new polyphenolic metabolites suillusol A-D (1-4), suillusinoic acid (5), ethyl suillusinoate (6), were isolated from the Suillus granulatus. The structures of new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy, nuclear magnetic resonance data, and single-crystal X-ray diffraction analysis. As far as we know, compound 1 represents an unprecedented type of natural product and compound 3 represents a new type of polyphenol fungal pigment, which may be biosynthetically related to thelephoric acid. The cytotoxicity against HepG2 cells of the new compounds were also evaluated. Compound 2 demonstrate significant inhibitory activity against HepG2 cells with IC50 values of 10.85 µM, surpassing that of positive control cisplatin. Moreover, compound 1 and 3 also exhibited moderate cytotoxic activity with their IC50 values measured at 35.60 and 32.62 µM, respectively. Our results indicate that S. granulatus is a rich source of chemical constituents that may provide new lead compounds for the development of anticancer agents.

11.
J Hazard Mater ; 473: 134634, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38795481

ABSTRACT

The photocatalytic reduction of nitrate has received considerable attention due to its high efficiency and environmentally friendly nature. The excessive addition of hole scavengers is the most commonly used method to increase the nitrate reduction efficiency. However, achieving high selectivity in the photocatalytic reduction of nitrate to N2 with low concentration of hole scavengers remains challenging. In this study, the SrFexTi1-xO3/TiO2 S-scheme heterojunction photocatalysts with many Lewis acidic adsorption sites have been developed. The experimental results demonstrated that the incorporation of 6% Fe into SrFe0.06Ti0.94O3/TiO2 (SFTO6) resulted in the nitrate conversion rate of 97.68% and the N2 selectivity reached 96.35% with 25 mmol/L formic acid. Moreover, it also exhibited excellent stability and recycle ability. After 5 cycles, SFTO6 still exhibited a stable photocatalytic denitration efficiency of 92.94%, highlighting its potential for practical application. Through comprehensive mechanistic investigations, enhancing direct reduction process is considered the key to its high reduction efficiency with low formic acid. And the Lewis acidic adsorption sites enhance N2 selectivity by enriching NOx- on the surface of the material. Overall, this study provides a novel approach for achieving efficient photocatalytic reduction of nitrate to N2 under conditions with low concentration of hole scavengers.

12.
Nanomaterials (Basel) ; 14(7)2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38607147

ABSTRACT

Field emission (FE) necessitates cathode materials with low work function and high thermal and electrical conductivity and stability. To meet these requirements, we developed FE cathodes based on high-quality wrinkled multilayer graphene (MLG) prepared using the bubble-assisted chemical vapor deposition (B-CVD) method and investigated their emission characteristics. The result showed that MLG cathodes prepared using the spin-coating method exhibited a high field emission current density (~7.9 mA/cm2), indicating the excellent intrinsic emission performance of the MLG. However, the weak adhesion between the MLG and the substrate led to the poor stability of the cathode. Screen printing was employed to prepare the cathode to improve stability, and the influence of a silver buffer layer was explored on the cathode's performance. The results demonstrated that these cathodes exhibited better emission stability, and the silver buffer layer further enhanced the comprehensive field emission performance. The optimized cathode possesses low turn-on field strength (~1.5 V/µm), low threshold field strength (~2.65 V/µm), high current density (~10.5 mA/cm2), and good emission uniformity. Moreover, the cathode also exhibits excellent emission stability, with a current fluctuation of only 6.28% during a 4-h test at 1530 V.

13.
Lancet Reg Health West Pac ; 46: 101062, 2024 May.
Article in English | MEDLINE | ID: mdl-38623390

ABSTRACT

Background: The public health burden of cardiomyopathies and competency in their management by health agencies in China are not well understood. Methods: This study adopted a multi-stage sampling method for hospital selection. In the first stage, nationwide tertiary hospital recruitment was performed. As a result, 88 hospitals with the consent of the director of cardiology and access to an established electronic medical records system, were recruited. In the second stage, we sampled 66 hospitals within each geographic-economic stratification through a random sampling process. Data on (1) the outpatient and inpatient visits for cardiomyopathies between 2017 and 2021 and (2) the competency in the management of patients with cardiomyopathies, were collected. The competency of a hospital to provide cardiomyopathy care was evaluated using a specifically devised scale. Findings: The outpatient and inpatient visits for cardiomyopathies increased between 2017 and 2021 by 38.6% and 33.0%, respectively. Most hospitals had basic facilities for cardiomyopathy assessment. However, access to more complex procedures was limited, and the integrated management pathway needs improvement. Only 4 (6.1%) of the 66 participating hospitals met the criteria for being designated as a comprehensive cardiomyopathy center, and only 29 (43.9%) could be classified as a primary cardiomyopathy center. There were significant variations in competency between hospitals with different administrative and economic levels. Interpretation: The health burden of cardiomyopathies has increased significantly between 2017 and 2021 in China. Although most tertiary hospitals in China can offer basic cardiomyopathy care, more advanced facilities are not yet universally available. Moreover, inconsistencies in the management of cardiomyopathies across hospitals due to differing administrative and economic levels warrants a review of the nation allocation of medical resources. Funding: This work was supported by the Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (2023-I2M-1-001) and the National High Level Hospital Clinical Research Funding (2022-GSP-GG-17).

14.
Article in English | MEDLINE | ID: mdl-38647881

ABSTRACT

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.

15.
Biomed J ; : 100727, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38636898

ABSTRACT

BACKGROUND: We investigated the effects of combination therapy albendazole and doxycycline in Angiostrongylus cantonensis-infected mice during early and late treatment. MATERIALS AND METHODS: C57BL/6 and BALB/c mice were divided into five groups: (i) uninfected, (ii) infected with A. cantonensis, (iii) infected + 10 mg/kg albendazole, (iv) infected + 25mg/kg doxycycline, and (v) infected + 10 mg/kg albendazole + 25 mg/kg doxycycline. We administered drugs in both early treatments started at 7-day post infections (dpi) and late treatments (14 dpi) to A. cantonensis-infected C57BL/6 and BALB/c mice. To assess the impact of these treatments, we employed the Morris water maze test to evaluate spatial learning and memory abilities, and the rotarod test to measure motor coordination and balance in C57BL/6 mice. Additionally, we monitored the expression of the cytokine IL-33 and GFAP in the brain of these mice using western blot analysis. RESULTS: In this study, A. cantonensis infection was observed to cause extensive cerebral angiostrongyliasis in C57BL/6 mice. This condition significantly affected their spatial learning and memory abilities, as assessed by the Morris water maze test, as well as their motor coordination, which was evaluated using the rotarod test. Early treatment with albendazole led to favorable recovery outcomes. Both C57BL/6 and BALB/c mice express IL-33 and GFAP after co-therapy. The differences of levels and patterns of IL-33 and GFAP expression in mice may be influenced by the balance between pro-inflammatory and anti-inflammatory signals within the immune system. CONCLUSIONS: Combination therapy with anthelmintics and antibiotics in the early stage of A. cantonensis infection, in C57BL/6 and BALB/c mice resulted in the death of parasites in the brain and reduced the subsequent neural function damage and slowed brain damage and neurobehavior impairment. This study suggests a more effective and novel treatment, and drug delivery method for brain lesions that can decrease the neurological damage of angiostrongyliasis patients.

16.
Heliyon ; 10(8): e29683, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681552

ABSTRACT

Purpose: As a major structural component of the outer membrane of Gram-negative bacteria, lipopolysaccharide (LPS) has been detected in the blood circulation and tissues in patients with chronic diseases and cancers, which plays a critical role in the tumor formation and progression. However, the biological role of LPS in human intrahepatic cholangiocarcinoma remains unclear. The aims of this study were to investigate the role of LPS in the malignant progression of intrahepatic cholangiocarcinoma. Methods: The cell migration and invasion capacities of cholangiocarcinoma cell lines were evaluated by Boyden chamber assays. Expression levels of the key molecules involved in the PI3K/AKT signaling and METTL3 were detected by qPCR and western blot. The molecular mechanism by which LPS promotes the malignant behaviors was investigated by using siRNAs, plasmids and small molecule inhibitors. Results: In vitro experiments showed that exogenous LPS treatment promoted cell migration and invasion capacities in both QBC939 and HUCCT1 cell lines, while did not affect cell proliferation and apoptosis. Mechanistically, exogenous LPS treatment had been proved to induce the increased expression of METTL3 and activate the downstream PI3K/AKTsignaling pathway. In addition, suppression of METTL3 expression reduced cell proliferation, migration and invasion capacities in both cell lines. Furthermore, inhibition of METTL3 expression or inhibition of PI3K/AKT signaling decreased LPS-induced cell migration and invasion capacities. Moreover, knockdown of METTL3 or inhibition of METTL3 significantly inhibited LPS-induced activation of the PI3K/AKT signaling. Conclusion: In general, these results suggest that the LPS-METTL3-PI3K/AKT signal axis promotes cell migration and invasion in ICC, which contributes to a reduced overall survival in patients with ICC. It may broaden the horizon of cancer therapy with potential therapeutic targets.

17.
Int Immunopharmacol ; 133: 112140, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38669952

ABSTRACT

BACKGROUND: Inflammation-induced intestinal barrier dysfunction is not only a pathological feature of Crohn's disease (CD) but also an important therapeutic target. Sclareol (SCL) is a nontoxic natural plant compound with anti-inflammatory effect, but its role in CD has not been established. METHODS: In vivo studies of mice with TNBS-induced colitis were carried out to evaluate the effects of SCL on CD-like colitis and intestinal barrier function. In vitro, a TNF-α-induced colonic organoid model was established to test the direct effect of SCL on inflammation-induced intestinal barrier injure and inflammatory response. The Nrf2/NF-κB/MLCK signalling was analysed to explore the mechanism of SCL. RESULTS: In vivo, SCL largely alleviated the colitis in TNBS mice, as evidenced by improvements in the weight loss, colitis symptoms, endoscopic score, macroscopic histological score, and histological inflammation score. Moreover, SCL significantly improved intestinal barrier dysfunction, manifested as reduced intestinal permeability and decreased intestinal bacterial translocation in TNBS mice. Importantly, SCL antagonised the intestinal mucosal inflammation while protecting tight junctions in TNBS mice. In vitro, SCL largely depressed pro-inflammatory cytokines levels and improved intestinal epithelial permeability in a TNF-α-induced colonic organoid model. In the context of CD, the protective effects of SCL against inflammation and intestinal barrier damage are at least partially results from the Nrf2 signalling activation and the NF-κB/MLCK signalling inhibition. CONCLUSIONS: SCL improved intestinal barrier dysfunction and alleviated CD-like colitis, possibly through modulation of Nrf2/NF-κB/MLCK signalling. In view of SCL's safety profile, there is hope that it will be useful in the clinic.


Subject(s)
Colitis , Crohn Disease , Intestinal Mucosa , NF-E2-Related Factor 2 , NF-kappa B , Signal Transduction , Trinitrobenzenesulfonic Acid , Animals , NF-E2-Related Factor 2/metabolism , Crohn Disease/drug therapy , Crohn Disease/pathology , Signal Transduction/drug effects , NF-kappa B/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/pathology , Mice , Intestinal Mucosa/drug effects , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Humans , Male , Disease Models, Animal , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Myosin-Light-Chain Kinase/metabolism , Mice, Inbred C57BL , Permeability/drug effects , Colon/pathology , Colon/drug effects , Diterpenes/therapeutic use , Diterpenes/pharmacology , Tumor Necrosis Factor-alpha/metabolism
18.
Environ Sci Technol ; 58(17): 7662-7671, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38578018

ABSTRACT

Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.


Subject(s)
Oxidation-Reduction , Toluene , Catalysis , Toluene/chemistry , Hot Temperature , Light , Titanium/chemistry , Platinum/chemistry , Volatile Organic Compounds/chemistry
19.
Environ Sci Technol ; 58(21): 9361-9369, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38687995

ABSTRACT

Surface hydroxyl groups commonly exist on the catalyst and present a significant role in the catalytic reaction. Considering the lack of systematical researches on the effect of the surface hydroxyl group on reactant molecule activation, the PtOx/TiO2 and PtOx-y(OH)y/TiO2 catalysts were constructed and studied for a comprehensive understanding of the roles of the surface hydroxyl group in the oxidation of volatiles organic compounds. The PtOx/TiO2 formed by a simple treatment with nitric acid presented greatly enhanced activity for toluene oxidation in which the turnover frequency of toluene oxidation on PtOx/TiO2 was around 14 times as high as that on PtOx-y(OH)y/TiO2. Experimental and theoretical results indicated that adsorption/activation of toluene and reactivity of oxygen atom on the catalyst determined the toluene oxidation on the catalyst. The removal of surface hydroxyl groups on PtOx promoted strong electronic coupling of the Pt 5d orbital in PtOx and C 2p orbital in toluene, facilitating the electron transfers from toluene to PtOx and subsequently the adsorption/activation of toluene. Additionally, the weak Pt-O bond promoted the activation of surface lattice oxygen, accelerating the deep oxidation of activated toluene. This study clarifies the inhibiting effect of surface hydroxyl groups on PtOx in toluene oxidation, providing a further understanding of hydrocarbon oxidation.


Subject(s)
Oxidation-Reduction , Platinum , Toluene , Catalysis , Toluene/chemistry , Platinum/chemistry , Titanium/chemistry , Adsorption
20.
ACS Nano ; 18(17): 11375-11388, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38629444

ABSTRACT

P2-NaxMnO2 has garnered significant attention due to its favorable Na+ conductivity and structural stability for large-scale energy storage fields. However, achieving a balance between high energy density and extended cycling stability remains a challenge due to the Jahn-Teller distortion of Mn3+ and anionic activity above 4.1 V. Herein, we propose a one-step in situ MgF2 strategy to synthesize a P2-Na0.76Ni0.225Mg0.025Mn0.75O1.95F0.05 cathode with improved Na-storage performance and decent water/air stability. By partially substituting cost-effective Mg for Ni and incorporating extra F for O, the optimized material demonstrates both enhanced capacity and structure stability via promoting Ni2+/Ni4+ and oxygen redox activity. It delivers a high capacity of 132.9 mA h g-1 with an elevated working potential of ≈3.48 V and maintains ≈83.0% capacity retention after 150 cycles at 100 mA g-1 within 2-4.3 V, compared to the 114.9 mA h g-1 capacity and 3.32 V discharging potential of the undoped Na0.76Ni0.25Mn0.75O2. While increasing the charging voltage to 4.5 V, 133.1 mA h g-1 capacity and 3.55 V discharging potential (vs Na/Na+) were achieved with 72.8% capacity retention after 100 cycles, far beyond that of the pristine sample (123.7 mA h g-1, 3.45 V, and 43.8%@100 cycles). Moreover, exceptional low-temperature cycling stability is achieved, with 95.0% after 150 cycles. Finally, the Na-storage mechanism of samples employing various doping strategies was investigated using in situ EIS, in situ XRD, and ex situ XPS techniques.

SELECTION OF CITATIONS
SEARCH DETAIL
...