Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(12): 1567-1570, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38224451

ABSTRACT

A novel dual-outward contraction mechanism is applied to construct 2D hollow carbon superstructures (HCSs) via pyrolysis of hybrid ZIF superstructures. One outward contraction stress is offered by the in situ formed thin carbon shell, while another originates from the interconnected facets of ZIF polyhedra within the ZIF superstructure.

2.
Small ; 20(24): e2308956, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38183403

ABSTRACT

The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2P nanoparticles embedded N-doped carbon superstructure (Co2P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2. Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.

3.
Adv Sci (Weinh) ; 10(32): e2303830, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37747263

ABSTRACT

The sluggish kinetics of sulfur conversions have long been hindering the implementation of fast and efficient sulfur electrochemistry in lithium-sulfur (Li-S) batteries. In this regard, herein the unique chromium boride (CrB) is developed via a well-confined mild-temperature thermal reaction to serve as an advanced sulfur electrocatalyst. Its interstitial-alloy nature features excellent conductivity, while the nano-lamination architecture affords abundant active sites for host-guest interactions. More importantly, the CrB nanocatalyst demonstrates a dual sulphophilicity with simultaneous Cr─S and B─S bondage for establishing strong interactions with the intermediate polysulfides. As a result, significant stabilization and promotion of sulfur redox behavior can be achieved, enabling an excellent Li-S cell cyclability with a minimum capacity fading rate of 0.0176% per cycle over 2000 cycles and a favorable rate capability up to 7 C. Additionally, a high areal capacity of 5.2 mAh cm-2 , and decent cycling and rate performances are still attainable under high sulfur loading and low electrolyte dosage. This work offers a facile approach and instructive insights into metal boride sulfur electrocatalyst, holding a good promise for pursuing high-efficiency sulfur electrochemistry and high-performance Li-S batteries.

4.
Nat Commun ; 14(1): 5124, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37612268

ABSTRACT

Chronic pain causes both physical suffering and comorbid mental symptoms such as anhedonia. However, the neural circuits and molecular mechanisms underlying these maladaptive behaviors remain elusive. Here using a mouse model, we report a pathway from vesicular glutamate transporter 3 neurons in the dorsal raphe nucleus to dopamine neurons in the ventral tegmental area (VGluT3DRN→DAVTA) wherein population-level activity in response to innocuous mechanical stimuli and sucrose consumption is inhibited by chronic neuropathic pain. Mechanistically, neuropathic pain dampens VGluT3DRN → DAVTA glutamatergic transmission and DAVTA neural excitability. VGluT3DRN → DAVTA activation alleviates neuropathic pain and comorbid anhedonia-like behavior (CAB) by releasing glutamate, which subsequently promotes DA release in the nucleus accumbens medial shell (NAcMed) and produces analgesic and anti-anhedonia effects via D2 and D1 receptors, respectively. In addition, VGluT3DRN → DAVTA inhibition produces pain-like reflexive hypersensitivity and anhedonia-like behavior in intact mice. These findings reveal a crucial role for VGluT3DRN → DAVTA → D2/D1NAcMed pathway in establishing and modulating chronic pain and CAB.


Subject(s)
Chronic Pain , Neuralgia , Humans , Ventral Tegmental Area , Dorsal Raphe Nucleus , Anhedonia , Dopaminergic Neurons , Glutamic Acid
5.
iScience ; 26(5): 106764, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37250305

ABSTRACT

Mechanical allodynia and hyperalgesia are intractable symptoms lacking effective clinical treatments in patients with neuropathic pain. However, whether and how mechanically responsive non-peptidergic nociceptors are involved remains elusive. Here, we showed that von Frey-evoked static allodynia and aversion, along with mechanical hyperalgesia after spared nerve injury (SNI) were reduced by ablation of MrgprdCreERT2-marked neurons. Electrophysiological recordings revealed that SNI-opened Aß-fiber inputs to laminae I-IIo and vIIi, as well as C-fiber inputs to vIIi, were all attenuated in Mrgprd-ablated mice. In addition, priming chemogenetic or optogenetic activation of Mrgprd+ neurons drove mechanical allodynia and aversion to low-threshold mechanical stimuli, along with mechanical hyperalgesia. Mechanistically, gated Aß and C inputs to vIIi were opened, potentially via central sensitization by dampening potassium currents. Altogether, we uncovered the involvement of Mrgprd+ nociceptors in nerve injury-induced mechanical pain and dissected the underlying spinal mechanisms, thus providing insights into potential therapeutic targets for pain management.

6.
Front Cell Neurosci ; 16: 910670, 2022.
Article in English | MEDLINE | ID: mdl-35693883

ABSTRACT

The high incidence of treatment-resistant pain calls for the urgent preclinical translation of new analgesics. Understanding the behavioral readout of pain in animals is crucial for efficacy evaluation when developing novel analgesics. Mas-related G protein-coupled receptor D-positive (Mrgprd+) and transient receptor potential vanilloid 1-positive (TRPV1+) sensory neurons are two major non-overlapping subpopulations of C-fiber nociceptors. Their activation has been reported to provoke diverse nocifensive behaviors. However, what kind of behavior reliably represents subjectively conscious pain perception needs to be revisited. Here, we generated transgenic mice in which Mrgprd+ or TRPV1+ sensory neurons specifically express channelrhodopsin-2 (ChR2). Under physiological conditions, optogenetic activation of hindpaw Mrgprd+ afferents evoked reflexive behaviors (lifting, etc.), but failed to produce aversion. In contrast, TRPV1+ afferents activation evoked marked reflexive behaviors and affective responses (licking, etc.), as well as robust aversion. Under neuropathic pain conditions induced by spared nerve injury (SNI), affective behaviors and avoidance can be elicited by Mrgprd+ afferents excitation. Mechanistically, spinal cord-lateral parabrachial nucleus (lPBN) projecting neurons in superficial layers (lamina I-II o ) were activated by TRPV1+ nociceptors in naïve conditions or by Mrgprd+ nociceptors after SNI, whereas only deep spinal cord neurons were activated by Mrgprd+ nociceptors in naïve conditions. Moreover, the excitatory inputs from Mrgprd+ afferents to neurons within inner lamina II (II i ) are partially gated under normal conditions. Altogether, we conclude that optogenetic activation of the adult Mrgprd+ nociceptors drives non-pain-like reflexive behaviors via the deep spinal cord pathway under physiological conditions and drives pain-like affective behaviors via superficial spinal cord pathway under pathological conditions. The distinct spinal pathway transmitting different forms of nocifensive behaviors provides different therapeutic targets. Moreover, this study appeals to the rational evaluation of preclinical analgesic efficacy by using comprehensive and suitable behavioral assays, as well as by assessing neural activity in the two distinct pathways.

7.
Front Chem ; 9: 638557, 2021.
Article in English | MEDLINE | ID: mdl-33777901

ABSTRACT

In this work, titanium carbide (TiC) nanoparticles have been successfully synthesized at much lower temperatures of 500°C using cheaper starting materials, such as waste polytetrafluoroethylene (PTFE) (carbon source) and titanium and metallic sodium, than the traditional carbothermal reduction of TiO2 at 1,800°C. An XRD pattern proved the formation of face-centered cubic TiC, and TEM images showed the obtained TiC nanoparticles with an average size of approximately 50 nm. In addition, the separator coated with TiC nanoparticles as an active material of interlayer effectively mitigates the shuttling problem by taming the polysulfides in Li-S batteries compared with a traditional celgard separator. The assembled cell realizes good cycling stability with 501 mAh g-1 and a low capacity fading of 0.1% per cycle after 300 cycles at 1 C due to high utilization of the sulfur-based active species.

8.
Dalton Trans ; 49(41): 14483-14489, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-33043932

ABSTRACT

The conductivity and stability of materials have always been the main problems hindering the development of lithium-ion battery applications. Here, we successfully construct MnCO3@NiO composites with unique heterogeneous structure via the epitaxial growth of porous NiO nanosheets (thickness: ∼125 nm) on MnCO3 microspheres (diameter: ∼3 µm) to be the anode of lithium-ion batteries. The synergistic effect provided by this special heterogeneous structure effectively improves the electrochemical kinetics, specific surface area as well as structural stability of the composites, finally resulting in predictable enhanced comprehensive electrochemical performance. The electrochemical results show that the MnCO3@NiO composites exhibit a reversible discharge capacity of 624 mA h g-1 at a current density of 1.0 A g-1 up to 300 cycles.

9.
J Nanosci Nanotechnol ; 20(10): 6512-6517, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32385007

ABSTRACT

Bio-renewable lignin has been used as a precursor for the preparation of various carbon materials, such as carbon fibers, ordered mesoporous carbon and graphite carbon cages. Nevertheless, up to now, there are few studies about prepare graphene-like carbon nanosheets derived from lignin. In this study, we synthesized graphene-like carbon nanosheets, using lignin as the precursor, via one-step pyrolysis route. Fortunately, physical and chemical characterization results indicate that it has high pore volume and hierarchical pore with wrinkled sheet graphene structure. Furthermore, the capability of graphene-like carbon nanosheets was investigated as a catalyst support in Fischer-Tropsch synthesis. The results of catalytic evaluation show that Fe2O3/GCNs has excellent catalytic activity and the selectivity of lower olefins, compared with Fe2O3/AC.

10.
ACS Omega ; 4(13): 15729-15733, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31572876

ABSTRACT

Plastic products have brought us great convenience in our daily life and work. But in the meantime, waste plastics have become solid pollutants in the environment due to its poor degradability. The resource utilization of waste plastic can decrease environmental pollution. Here, a thermal reduction method for the conversion of waste polyethylene to ZnCCo3 and ZnCNi3 in a stainless-steel autoclave under mild conditions has been reported. X-ray powder diffraction patterns indicate that the obtained samples are anti-perovskite-structured ternary carbides (ZnCCo3 and ZnCNi3) with good crystallinity. Moreover, the formation mechanism of ternary carbides has been briefly discussed. This method can be developed into an effective method for disposal of other waste plastics.

11.
ACS Omega ; 4(3): 4896-4900, 2019 Mar 31.
Article in English | MEDLINE | ID: mdl-31459673

ABSTRACT

The resource utilization of waste plastic can not only control environmental pollution but can also ease up the problems of lack of energy resources. In this study, molybdenum carbide (Mo2C) nanoparticles have been synthesized by utilizing waste polyvinyl chloride as a carbon source in a stainless-steel autoclave at 600 °C. X-ray diffraction pattern indicates that the product is orthorhombic phase Mo2C. Electron microscopy photographs show that the obtained Mo2C product consisted of crystalline nanoparticles with an average size of 50 nm. The possible formation mechanisms of Mo2C have been also briefly discussed on the basis of the structures of the products synthesized with different reaction times. The effects of reaction temperature on the crystallinity and microstructure of the obtained products have been investigated. The results show that higher reaction temperature promotes the formation of Mo2C with high crystallinity.

12.
Data Brief ; 23: 103624, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30793015

ABSTRACT

The oxidation of amines to imines is an important chemical transformation. In this article, we report original data on the synthesis of carbon doped WO3-x ultrathin nanosheets via an acid-assisted one-pot process, which exhibit excellent photocatalytic activity in the aerobic oxidation of amines to corresponding imines under visible light irradiation at room temperature. The composition, microstructure, morphology, photocatalytic activity of the corresponding samples and possible mechanism are included here. The data are related to "Oxide Defect Engineering Enables to Couple Solar Energy into Oxygen Activation" (Zhang et al., 2016).

13.
Nanoscale ; 10(40): 18936-18941, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30302475

ABSTRACT

Two-dimensional (2D) molybdenum nitride (MoN) nanosheets are promising anode materials for improved lithium-ion batteries. However, the reported synthesis methods of MoN generally rely on high-temperature and complex procedures with low cost efficiency. Herein, we report a facile one-pot synthesis of 2D MoN nanosheets at a low temperature of 400 °C via a solid-state reaction of molybdenum disulfide, sulfur and sodium amide in an autoclave. When employed as the anode material for lithium ion batteries, the as-developed MoN electrode exhibits outstanding cyclability with a high capacity retention of 898 mA h g-1 over 400 cycles at a current rate of 200 mA g-1 as well as a superb rate capability with a capacity of 505 mA h g-1 at a high rate up to 2 A g-1. The excellent lithium storage performance of the MoN electrode is attributed to its advantageously high conductivity and unique 2D nanostructure.

14.
ACS Omega ; 3(1): 1350-1356, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457970

ABSTRACT

Bio-renewable lignin has been used as a carbon source for the preparation of porous carbon materials. Nevertheless, up to now, there are few studies about the influence of molecular weight of lignin on the structure and morphology of the ordered mesoporous carbon. Here, we synthesized the ordered mesoporous carbon derived from different molecular weights of lignin and Pluronic F127. Fortunately, we found that molecular weight is an important factor for obtaining highly ordered channels, high specific surface area, and ordered mesoporous carbon. More importantly, the narrow well-defined mesoporous channel could exert a spatial restriction effect to some extent, which can serve as nanoreactors for efficient reactions and enhance catalytic performance. The highly ordered mesoporous carbon from lignin is a good candidate for Fischer-Tropsch synthesis catalyst supports.

15.
Dalton Trans ; 46(9): 2756-2759, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-28181605

ABSTRACT

Resource utilization of waste plastic could solve the problem of environmental pollution and simultaneously relieve energy shortages, achieving sustainable development. In this study, the conversion of waste polytetrafluoroethylene (PTFE) to cubic silicon carbide (SiC) nanoparticles has been described. The structures and morphologies of the obtained SiC were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Furthermore, the FTIR spectrum of the obtained SiC sample suggests that the waste PTFE was completely converted into SiC in our approach.

16.
Nanotechnology ; 28(6): 065406, 2017 02 10.
Article in English | MEDLINE | ID: mdl-28071604

ABSTRACT

A facile anion exchange strategy was applied to the synthesis of porous NiS hexagonal nanoplates (NiS HNPs) as an electrode material for supercapacitors. It was found that Na2S concentration is a key factor to achieve porous NiS hexagonal nanoplates with well-defined architecture. Porous NiS hexagonal nanoplates exhibited a specific capacitance of 1897 F g-1 at a current density of 1 A g-1. NiS HNPs//activated carbon (AC) asymmetric supercapacitor (ASC) shows a long cycle lifespan (about 100% capacity retention after 4000 cycles at a current density of 3 A g-1) with a maximum energy density of 11.6 Wh kg-1 at a large loading mass of about 30 mg. Impressively, two NiS HNPs//AC ASCs in series could light up a red LED for about 30 min. The remarkable electrochemical performance of NiS HNPs is ascribed to their unique hierarchical porous architectures. The anion exchange method is a facile and versatile strategy for the synthesis of metal sulfides with high performance for energy storage.

17.
Dalton Trans ; 45(7): 2814-7, 2016 Feb 21.
Article in English | MEDLINE | ID: mdl-26813100

ABSTRACT

A simple Mg-thermal reduction reaction is reported to synthesize germanium (Ge) nanoparticles with a uniform size at a low temperature of 400 °C in an autoclave. The as-prepared Ge nanoparticles exhibit promising anode applications in lithium ion batteries with high capacity and excellent cycling stability.

18.
Chem Commun (Camb) ; 51(12): 2345-8, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25562783

ABSTRACT

Silicon (Si) nanoparticles have been prepared by a "metathesis" reaction of magnesium silicide (Mg2Si) and zinc chloride (ZnCl2) in an autoclave at 300 °C. The as-prepared Si nanoparticles exhibit a reversible capacity of 795 mA h g(-1) at a current density of 3.6 A g(-1) over 250 cycles.

19.
Angew Chem Int Ed Engl ; 54(12): 3822-5, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25631549

ABSTRACT

Crystalline Si nanoparticles are prepared by reduction of SiCl4 with metallic magnesium in the molten salt of AlCl3 at 200 °C in an autoclave. AlCl3 not only acts as molten salt, but also participates in the reaction. The related experiments confirm that metallic Mg reduces AlCl3 to create nascent Al which could immediately reduce SiCl4 to Si, and the by-product MgCl2 would combine with AlCl3 forming complex of MgAl2Cl8. As anode for rechargeable lithium ion batteries, the as-prepared Si delivers the reversible capacity of 3083 mAh g(-1) at 1.2 A g(-1) after 50 cycles, and 1180 mAh g(-1) at 3 A g(-1) over 500 cycles.

20.
ACS Appl Mater Interfaces ; 7(1): 409-14, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25494648

ABSTRACT

A novel approach to fabricate Si@carbon/reduced graphene oxides composite (Si@C/RGO) assisted by polyaniline (PANI) is developed. Here, PANI not only serves as "glue" to combine Si nanoparticles with graphene oxides through electrostatic attraction but also can be pyrolyzed as carbon layer coated on Si particles during subsequent annealing treatment. The assembled composite delivers high reversible capacity of 1121 mAh g(-1) at a current density of 0.9 A g(-1) over 230 cycles with improved initial Coulombic efficiency of 81.1%, while the bare Si and Si@carbon only retain specific capacity of 50 and 495 mAh g(-1) at 0.3 A g(-1) after 50 cycles, respectively. The enhanced electrochemical performance of Si@C/RGO can be attributed to the dual protection of carbon layer and graphene sheets, which are synergistically capable of overcoming the drawbacks of inner Si particles such as huge volume change and low conductivity and providing protective and conductive matrix to buffer the volume variation, prevent the Si particles from aggregating, enhance the conductivity, and stabilize the solid-electrolyte interface membrane during cycling. Importantly, this method opens a novel, universal graphene coating strategy, which can be extended to other fascinating anode and cathode materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...