Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 1563, 2021 03 10.
Article in English | MEDLINE | ID: mdl-33692355

ABSTRACT

Purple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-ß-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.


Subject(s)
Acyltransferases/metabolism , Caffeic Acids/metabolism , Echinacea/enzymology , Echinacea/metabolism , Plant Proteins/metabolism , Succinates/metabolism
2.
Plant Cell ; 32(11): 3576-3597, 2020 11.
Article in English | MEDLINE | ID: mdl-32883711

ABSTRACT

Pectins are abundant in the cell walls of dicotyledonous plants, but how they interact with other wall polymers and influence wall integrity and cell growth has remained mysterious. Here, we verified that QUASIMODO2 (QUA2) is a pectin methyltransferase and determined that QUA2 is required for normal pectin biosynthesis. To gain further insight into how pectin affects wall assembly and integrity maintenance, we investigated cellulose biosynthesis, cellulose organization, cortical microtubules, and wall integrity signaling in two mutant alleles of Arabidopsis (Arabidopsis thaliana) QUA2, qua2 and tsd2 In both mutants, crystalline cellulose content is reduced, cellulose synthase particles move more slowly, and cellulose organization is aberrant. NMR analysis shows higher mobility of cellulose and matrix polysaccharides in the mutants. Microtubules in mutant hypocotyls have aberrant organization and depolymerize more readily upon treatment with oryzalin or external force. The expression of genes related to wall integrity, wall biosynthesis, and microtubule stability is dysregulated in both mutants. These data provide insights into how homogalacturonan is methylesterified upon its synthesis, the mechanisms by which pectin functionally interacts with cellulose, and how these interactions are translated into intracellular regulation to maintain the structural integrity of the cell wall during plant growth and development.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/cytology , Cellulose/biosynthesis , Methyltransferases/metabolism , Mutation , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Cell Adhesion/genetics , Cell Wall/genetics , Cellulose/genetics , Dinitrobenzenes/pharmacology , Gene Expression Regulation, Plant , Hypocotyl/cytology , Hypocotyl/genetics , Hypocotyl/growth & development , Methyltransferases/genetics , Microtubules/metabolism , Pectins/biosynthesis , Pectins/genetics , Pectins/metabolism , Plant Cells/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Sulfanilamides/pharmacology , Uronic Acids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...