Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Appl Pharmacol ; 489: 117012, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38906511

ABSTRACT

Keloid formation has been linked to abnormal fibroblast function, such as excessive proliferation and extracellular matrix (ECM) production. Serum deprivation protein response (SDPR) is a crucial regulator of cellular function under diverse pathological conditions, yet its role in keloid formation remains unknown. The current work investigated the function of SDPR in regulating the proliferation, motility, and ECM production of keloid fibroblasts (KFs), as well as to decipher the mechanisms involved. Analysis of RNA sequencing data from the GEO database demonstrated significant down-regulation of SDPR in KF compared to normal fibroblasts (NFs). This down-regulation was also observed in clinical keloid specimens and isolated KFs. Overexpression of SDPR suppressed the proliferation, motility, and ECM production of KFs, while depletion of SDPR exacerbated the enhancing impact of TGF-ß1 on the proliferation, motility, and ECM production of NFs. Mechanistic studies revealed that SDPR overexpression repressed TGF-ß/Smad signal cascade activation in KFs along with decreased levels of phosphorylated Samd2/3, while SDPR depletion exacerbated TGF-ß/Smad activation in TGF-ß1-stimulated NFs. SDPR overexpression also repressed ERK1/2 activation in KFs, while SDPR depletion exacerbated ERK1/2 activation in TGF-ß1-stimulated NFs. Inhibition of ERK1/2 abolished SDPR-depletion-induced TGF-ß1/Smad activation, cell proliferation, motility, and ECM production in NFs. In conclusion, SDPR represses the proliferation, motility, and ECM production in KFs by blocking the TGF-ß1/Smad pathway in an ERK1/2-dependent manner. The findings highlight the role of SDPR in regulating abnormal behaviors of fibroblasts associated with keloid formation and suggest it as a potential target for anti-keloid therapy development.


Subject(s)
Cell Movement , Cell Proliferation , Extracellular Matrix , Fibroblasts , Keloid , MAP Kinase Signaling System , Smad Proteins , Transforming Growth Factor beta1 , Humans , Keloid/pathology , Keloid/metabolism , Keloid/genetics , Fibroblasts/drug effects , Fibroblasts/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Transforming Growth Factor beta1/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/drug effects , Smad Proteins/metabolism , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Signal Transduction , Cells, Cultured , Mitogen-Activated Protein Kinase 1/metabolism , Male , Female , Mitogen-Activated Protein Kinase 3/metabolism , Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...