Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Adv Mater ; : e2404640, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775475

ABSTRACT

Cathode materials of sodium-based batteries with high specific capacity and fast charge-discharge mode, as well as ultralong reversible cycles at wide applied temperatures, are essential for future development of advanced energy storage system. Developing transition metal selenides with intercalation features provides a new strategy for realizing the above cathode materials. Herein, this work reports a storage mechanism of sodium ion in hexagonal CuSe (h-CuSe) based on the density functional theory (DFT) guidance. This work reveals that the two-dimensional ion intercalation triggers localized redox reaction in the h-CuSe bulk phase, termed intercalation-induced localized conversion (ILC) mechanism, to stabilize the sodium storage structure by forming localized Cu7Se4 transition phase and adjusting the near-edge coordination state of the Cu sites to achieve high reversible capacity and ultra-long cycling life, while allowing rapid charge-discharge cycling over a wide temperature range.

2.
Langmuir ; 40(17): 9255-9264, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38630628

ABSTRACT

The solid-state lithium sulfur battery (SSLSB) is an attractive next-generation energy storage system by reason of its remarkably high energy density and safety. However, the SSLSB still faces critical challenges, such as sluggish reaction kinetics, mismatched interface, and undesirable reversible capacity. Herein, a high-performance SSLSB is reported using sulfurized polyacrylonitrile with rich selenium-doped sulfur (Se/S-S@pPAN) as a cathode and poly(ethylene oxide)/Li7La3Zr1.4Ta0.6O12 (PEO-LLZTO) as an electrolyte. The sulfur content of the cathode up to 60.9 wt % can be achieved by dispersing selenium sulfide (SeSx) species in the sulfurized polyacrylonitrile (S@pPAN) skeleton at a molecular level. Selenium as a eutectic accelerator can be uniformly distributed in the composite through the Se-S bond and can accelerate the reaction kinetics. The PEO-LLZTO hybrid solid-state electrolyte (SSE) displays an attractive electrochemical performance and provides an intimate contact with electrodes. At 60 °C, Se/S-S@pPAN delivers an impressive discharge capacity of 1042 mAh g-1 at 0.1C and 445 mAh g-1 at 1C. Additionally, the LiFePO4 cathodes combined with PEO-LLZTO deliver a high reversible capacity (158.9 mAh g-1, 1C) and an ultralong lifespan (a capacity retention of 80%, 1000 cycles) at 1C. The synergetic design of the high-performance sulfur cathode and the organic/inorganic hybrid electrolyte is crucial for enabling the high-performance SSLSB.

3.
Small ; : e2312011, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431933

ABSTRACT

Recently, coupling the conventional low Pt-group-metal (low-PGM, LP) and emerging PGM-free (PF) moiety to form a composite LP/PF catalyst is proposed to be an advanced strategy to improve the intrinsic activity and stability of oxygen reduction reaction (ORR) catalysts. Milestones in terms of ORR mass activity are created by this type of catalyst. However, the specific synergy between LP and PF moieties has not been well elucidated. Herein, two model catalysts are synthesized, i.e., atomically dispersed Co/N/C supporting Pt single atoms (Co/N/C@Pt-SAs) and PtCo nanoparticles (Co/N/C@PtCo-NPs). Interestingly, the Co/N/C@PtCo-NPs catalyst presents higher ORR mass activity prior to Co/N/C@Pt-SAs. This is theoretically due to the dual "built-in electric field" in Co/N/C@PtCo-NPs: one electric field with a direction from Pt to Co in NPs and another from Pt to Co/N/C; that is, Pt gains higher electron density in Co/N/C@PtCo-NPs than that in Co/N/C@Pt-SAs, thus forming an asymmetric electron cloud, and regulating the adsorption and activation of oxygen-containing species. In addition, the existence of Co significantly decreases the average valence state of PtCo NPs, indicating a stronger affinity between PtCo NPs and Co/N/C substrate, to account for the enhanced stability.

4.
Adv Mater ; 36(4): e2308193, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37847882

ABSTRACT

Rechargeable batteries are widely used as power sources for portable electronics, electric vehicles and smart grids. Their practical performances are, however, largely undermined under extreme conditions, such as in high-altitude drones, ocean exploration and polar expedition. These extreme environmental conditions not only bring new challenges for batteries but also incur unique battery failure mechanisms. To fill in the gap, it is of great importance to understand the battery failure mechanisms under different extreme conditions and figure out the key parameters that limit battery performances. In this review, the authors start by investigating the key challenges from the viewpoints of ionic/charge transfer, material/interface evolution and electrolyte degradation under different extreme conditions. This is followed by different engineering approaches through electrode materials design, electrolyte modification and battery component optimization to enhance practical battery performances. Finally, a short perspective is provided about the future development of rechargeable batteries under extreme conditions.

5.
J Biol Chem ; 299(11): 105316, 2023 11.
Article in English | MEDLINE | ID: mdl-37797697

ABSTRACT

Lack of estradiol production by granulosa cells blocks follicle development, causes failure of estrous initiation, and results in an inability to ovulate. The ubiquitin-proteasome system plays a critical role in maintaining protein homeostasis and stability of the estrous cycle, but knowledge of deubiquitination enzyme function in estradiol synthesis is limited. Here, we observe that the deubiquitinase ubiquitin C-terminal hydrolase 1 (UCHL1) is more significant in estrous sows and high litter-size sows than in nonestrous sows and low-yielding sows. Overexpression of UCHL1 promotes estradiol synthesis in granulosa cells, and interference with UCHL1 has the opposite effect. UCHL1 binds, deubiquitinates, and stabilizes voltage-dependent anion channel 2 (VDAC2), promoting the synthesis of the estradiol precursor pregnenolone. Cysteine 90 (C90) of UCHL1 is necessary for its deubiquitination activity, and Lys45 and Lys64 in VDAC2 are essential for its ubiquitination and degradation. In vivo, compared with WT and sh-NC-AAV groups, the estrus cycle of female mice is disturbed, estradiol level is decreased, and the number of antral follicles is decreased after the injection of sh-UCHL1-AAV into ovarian tissue. These findings suggest that UCHL1 promotes estradiol synthesis by stabilizing VDAC2 and identify UCHL1 as a candidate gene affecting reproductive performance.


Subject(s)
Estradiol , Ubiquitin Thiolesterase , Voltage-Dependent Anion Channel 2 , Animals , Female , Mice , Granulosa Cells/metabolism , Ovarian Follicle/metabolism , Swine , Ubiquitin Thiolesterase/metabolism , Voltage-Dependent Anion Channel 2/metabolism , Sus scrofa
6.
J Hepatocell Carcinoma ; 10: 1209-1222, 2023.
Article in English | MEDLINE | ID: mdl-37533600

ABSTRACT

Purpose: The current therapeutic strategies for high-risk, unresectable hepatocellular carcinoma (HCC) patients demonstrate suboptimal outcomes. This study aimed to assess the clinical efficacy of the combined approach of hepatic arterial infusion chemotherapy (HAIC), lenvatinib, and tislelizumab, either with or without transhepatic arterial embolization (TAE), in managing HCC patients with portal vein tumor thrombus (PVTT) and significant tumor load. Patients and Methods: In this multicenter retrospective study, we analyzed patients diagnosed with primary, unresectable HCC presenting with PVTT and substantial tumor load who had undergone treatment with HAIC, lenvatinib, and tislelizumab, with or without TAE (referred to as the THLP or HLP group), between January 2019 and February 2022 across four medical centers in China. The outcomes included objective response rate (ORR), disease control rate (DCR), overall survival (OS), and progression-free survival (PFS). Results: The study cohort comprised 100 patients, 50 each in the THLP and HLP groups. The THLP group demonstrated a significantly superior ORR (72% vs 52%, P=0.039). However, both groups exhibited comparable DCR (88% vs 76%, P=0.118), as assessed by the modified response evaluation criteria in solid tumors. The median OS and PFS for the entire cohort were 12.5 months (95% CI, 10.9-14.8) and 5.0 months (95% CI, 4.2-5.4), respectively. The THLP group exhibited a significantly extended OS (median, 14.1 vs 11.3 months, P=0.041) and PFS (median, 5.6 vs 4.4 months, P=0.037) in comparison to the HLP group. The most frequently reported treatment-related adverse events included abdominal pain and nausea, both reported by 59% of patients. Conclusion: The combination of HAIC, lenvatinib, tislelizumab, and TAE was feasible in HCC patients with PVTT and high tumor burden, with tolerable safety.

8.
Adv Mater ; 35(36): e2303297, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37272677

ABSTRACT

Bi-based materials are one of the most promising candidates for electrochemical CO2 reduction reaction (CO2 RR) to formate; however, the majority of them still suffer from low current density and stability that essentially constrain their potential applications at the industrial scale. Surface modification represents an effective approach to modulate the electrode microenvironment and the relative binding strength of key intermediates. Herein, it is demonstrated that the surface comodification with halides and alkali metal ions from the conversion of Bi-based halide perovskite nanocrystals is a viable strategy to boost the CO2 RR performance of Bi for formate electrosynthesis. Cs3 Bi2 I9 nanocrystals are prepared by a hot-injection method. The as-prepared products feature well-defined hexagonal shape and uniform size distribution. When used as the precatalyst, Cs3 Bi2 I9 nanocrystals are converted to Cs+ and I- comodified Bi. The resultant catalyst exhibits high formate Faradaic efficiency close to 100%, and remarkable partial current density up to 44 mA cm-2 in an H-cell and up to 276 mA cm-2 in a flow cell. Moreover, Cs3 Bi2 I9 is used as the cathode catalyst and paired with an Al anode in an Al-CO2 battery for simultaneous CO2 valorization and power generation.

9.
Adv Mater ; 35(41): e2304022, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37358536

ABSTRACT

Electrochemical oxygen evolution reaction (OER) kinetics are heavily correlated with hybridization of the transition metal d-orbital and oxygen intermediate p-orbital, which dictates the barriers of intermediate adsorption/desorption on the active sites of catalysts. Herein, a strategy is developed involving strain engineering and coordination regulation to enhance the hybridization of Ni 3d and O 2p orbitals, and the as-synthesized Ni-2,6-naphthalenedicarboxylic acid metal-organic framework (DD-Ni-NDA) nanosheets deliver a low OER overpotential of 260 mV to reach 10 mA cm-2 . By integrating an alkaline anion exchange membrane electrolyzer and Pt/C electrode, 200 and 500 mA cm-2 current densities are reached with cell voltages of 1.6 and 2.1 V, respectively. When loaded on a BiVO4 photoanode, the nanosheet enables highly active solar-driven water oxygen. Structural characterizations together with theoretical calculations reveal that the spin state of the centre Ni atoms is regulated by the tensile strain and unsaturated coordination defects in DD-Ni-NDA, and such spin regulation facilitates spin-dependent charge transfer of the OER. Molecular orbital hybridization analysis reveals the mechanism of OH* and OOH* adsorption energy regulation by changes in the DD-Ni-NDA spin state, which provides a deeper understanding of the electronic structure design of catalysts for the OER.

10.
Small Methods ; 7(7): e2201247, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37086116

ABSTRACT

Realizing efficacious π-donation from the O 2p orbital to electron-deficient metal (t2g ) d-orbitals along with separately tuned adsorption of *O and *OOH, is an imperious pre-requisite for an electrocatalyst design to demonstrate boosted oxygen evolution reaction (OER) performance. To regulate the π-donation and the adsorption ability for *O and *OOH, herein, a facile strategy to modulate the electron transfer from electron-rich t2g -orbitals to electron-deficient t2g -orbitals, via strong π-donation from the π-symmetry lone pairs of the bridging O2- , and the d-band center of a biomimetic honeycomb (BHC)-like nanoarchitecture (Ir1- x (Ir0.8 V0.2 O2 )x -BHC) is introduced. The suitable integration of V heteroatoms in the single crystal system of IrO2 decreases the electron density on the neighboring Ir sites, and causes an upshift in the d-band center of Ir1- x (Ir0.8 V0.2 O2 )x -BHC, weakening the adsorption of *O while strengthening that of *OOH, lowers the energy barrier for OER. Therefore, BHC design demonstrates excellent OER performance (shows a small overpotential of 238 mV at 10 mA cm-2 and a Tafel slope of 39.87 mV dec-1 ) with remarkable stability (130 h) in corrosive acidic electrolyte. This work opens a new corridor to design robust biomimetic nanoarchitectures of modulated π-symmetry (t2g ) d-orbitals and the band structure, to achieve excellent activity and durability in acidic environment.

11.
Nanomicro Lett ; 15(1): 75, 2023 Mar 28.
Article in English | MEDLINE | ID: mdl-36976391

ABSTRACT

Lithium-sulfur batteries with liquid electrolytes have been obstructed by severe shuttle effects and intrinsic safety concerns. Introducing inorganic solid-state electrolytes into lithium-sulfur systems is believed as an effective approach to eliminate these issues without sacrificing the high-energy density, which determines sulfide-based all-solid-state lithium-sulfur batteries. However, the lack of design principles for high-performance composite sulfur cathodes limits their further application. The sulfur cathode regulation should take several factors including the intrinsic insulation of sulfur, well-designed conductive networks, integrated sulfur-electrolyte interfaces, and porous structure for volume expansion, and the correlation between these factors into account. Here, we summarize the challenges of regulating composite sulfur cathodes with respect to ionic/electronic diffusions and put forward the corresponding solutions for obtaining stable positive electrodes. In the last section, we also outlook the future research pathways of architecture sulfur cathode to guide the develop high-performance all-solid-state lithium-sulfur batteries.

12.
Angew Chem Int Ed Engl ; 62(20): e202302547, 2023 May 08.
Article in English | MEDLINE | ID: mdl-36919817

ABSTRACT

Non-equilibrium kinetic intermediates are usually preferentially generated instead of thermodynamic stable phases in the solid-state synthesis of layered oxides. Understanding the inherent complexity between thermodynamics and kinetics is important for designing high cationic ordering cathodes. Single-crystal strategy is an effective way to solve the intrinsic chemo-mechanical problems of Ni-rich cathodes. However, the synthesis of high-performance single-crystal is very challenging. Herein, the kinetic reaction path and the formation mechanism of non-equilibrium intermediates in the synthesis of single-crystal Co-free Ni-rich were explored. We demonstrate that the formation of non-equilibrium intermediate and the electrochemical-thermo-mechanical failure can be effectively inhibited by driving low-temperature topotactic lithiation. This work provides a basis for designing high-performance single-crystal Ni-rich layered oxides by regulating the defective structures.

13.
Article in English | MEDLINE | ID: mdl-36753671

ABSTRACT

Layered oxides LiNixCoyMnzO2 are widely used as the main cathode material for high-energy lithium-ion batteries. Over long-term cycling, irreversible phase transformations in layered oxides usually occur along with the loss of active lithium, which directly reflects in the sharp decrease of capacity. However, it is difficult to accurately and rapidly determine lithium content in aged materials, raising extreme impediments in the direct recycling of layered oxides. Herein, we propose a facile method for quick and accurate calculation of the residual lithium content through the developed relationship of shear strain and the states of charge. Based on this recognization, a discharge capacity close to the original capacity of the pristine material is achieved in the regenerated material by combining a hydrothermal method with annealing treatment. The recycled material demonstrates a dramatic improvement in electrochemical properties, especially the high rate performance. This method not only effectively realizes the quantitative regeneration of cathode materials but also provides a possible strategy for the future development of direct regeneration.

14.
Nat Commun ; 14(1): 1081, 2023 Feb 25.
Article in English | MEDLINE | ID: mdl-36841814

ABSTRACT

The electrochemical stability window of the electrolyte solution limits the energy content of non-aqueous lithium metal batteries. In particular, although electrolytes comprising fluorinated solvents show good oxidation stability against high-voltage positive electrode active materials such as LiNi0.8Co0.1Mn0.1O2 (NCM811), the ionic conductivity is adversely affected and, thus, the battery cycling performance at high current rates and low temperatures. To address these issues, here we report the design and synthesis of a monofluoride ether as an electrolyte solvent with Li-F and Li-O tridentate coordination chemistries. The monofluoro substituent (-CH2F) in the solvent molecule, differently from the difluoro (-CHF2) and trifluoro (-CF3) counterparts, improves the electrolyte ionic conductivity without narrowing the oxidation stability. Indeed, the electrolyte solution with the monofluoride ether solvent demonstrates good compatibility with positive and negative electrodes in a wide range of temperatures (i.e., from -60 °C to +60 °C) and at high charge/discharge rates (e.g., at 17.5 mA cm-2). Using this electrolyte solution, we assemble and test a 320 mAh Li||NCM811 multi-layer pouch cell, which delivers a specific energy of 426 Wh kg-1 (based on the weight of the entire cell) and capacity retention of 80% after 200 cycles at 0.8/8 mA cm-2 charge/discharge rate and 30 °C.

15.
Adv Mater ; 35(12): e2210658, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36641734

ABSTRACT

CO2 utilization and conversion are of great importance in alleviating the rising CO2 concentration in the atmosphere. Here, a single-atom catalyst (SAC) is reported for electrochemical CO2 utilization in both aqueous and aprotic electrolytes. Specifically, atomically dispersed Mn-N4 sites are embedded in bowl-like mesoporous carbon particles with the functionalization of epoxy groups in the second coordination spheres. Theoretical calculations suggest that the epoxy groups near the Mn-N4 site adjust the electronic structure of the catalyst with reduced reaction energy barriers for the electrocatalytic reduction of CO2 to CO. The resultant Mn-single-atom carbon with N and O doped catalyst (MCs-(N,O)) exhibits extraordinary electrocatalytic performance with a high CO faradaic efficiency of 94.5%, a high CO current density of 13.7 mA cm-2 , and a low overpotential of 0.44 V in the aqueous environment. Meanwhile, as a cathode catalyst for aprotic Li-CO2 batteries, the MCs-(N,O) with well-regulated active sites and unique mesoporous bowl-like morphology optimizes the nucleation behavior of discharge products. MCs-(N,O)-based batteries deliver a low overpotential and excellent cyclic stability of 1000 h. The findings in this work provide a new avenue to design and fabricate SACs for various electrochemical CO2 utilization systems.

16.
Angew Chem Int Ed Engl ; 62(10): e202215406, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36593654

ABSTRACT

Cu-based catalysts have been widely applied in electroreduction of carbon dioxide (CO2 ER) to produce multicarbon (C2+ ) feedstocks (e.g., C2 H4 ). However, the high energy barriers for CO2 activation on the Cu surface is a challenge for a high catalytic efficiency and product selectivity. Herein, we developed an in situ *CO generation and spillover strategy by engineering single Ni atoms on a pyridinic N-enriched carbon support with a sodalite (SOD) topology (Ni-SOD/NC) that acted as a donor to feed adjacent Cu nanoparticles (NPs) with *CO intermediate. As a result, a high C2 H4 selectivity of 62.5 % and an industrial-level current density of 160 mA cm-2 at a low potential of -0.72 V were achieved. Our studies revealed that the isolated NiN3 active sites with adjacent pyridinic N species facilitated the *CO desorption and the massive *CO intermediate released from Ni-SOD/NC then overflowed to Cu NPs surface to enrich the *CO coverage for improving the selectivity of CO2 ER to C2 H4 .

17.
Small Methods ; 7(3): e2201596, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36703553

ABSTRACT

Novel methods and mechanisms for graphene fabrication are of great importance in the development of materials science. Herein, a facile method to directly convert carbonaceous salts into high-quality freestanding graphene via a simple one-step redox reaction, is reported. The redox couple can be a combination of sodium borohydride (reductant) and sodium carbonate (oxidant), which can readily react with each other when evenly mixed/calcined and yield gram-scale, high-quality, contamination-free, micron-sized, freestanding graphene. More importantly, this method is applicable to a variety of input reductants and oxidants that are low cost and easily accessible. An in-depth investigation reveals that the carbonaceous oxidants can not only provide reduced carbon mass for graphene formation but also act as a self-template to guide the polymerization of carbon atoms following the pattern of the monolayer, six-carbon rings. In addition, the direct formation of graphene exhibits theoretically lower energy barriers than that of other allotropes such as fullerene and carbon nanotube. This facile, low-cost, scalable, and applicable method for mass production of high-quality graphene is expected to revolutionize graphene fabrication technology and boost its practical application to the industry level.

18.
Adv Mater ; 35(14): e2210966, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36649735

ABSTRACT

Increasing the upper cut-off voltage of LiCoO2 (LCO) is one of the most efficient strategies to gain high-energy density for current lithium-ion batteries. However, surface instability is expected to be exaggerated with increasing voltage arising from the high reactivity between the delithiated LCO and electrolytes, leading to serious safety concerns. This work is aimed to construct a physically and chemically stable phosphate-rich cathode-electrolyte interface (CEI) on the LCO particles to mitigate this issue. This phosphate-rich CEI is generated during the electrochemical activation by using fluoroethylene carbonate and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyletherare as the solvents. Both solvents also demonstrate high thermal stability, reducing the intrinsic flammability of the commercial organic electrolyte, thereby eliminating the safety concern in the LCO-based systems upon high-voltage operation. This stable CEI layer on the particle surface can also enhance the surface structure by blocking direct contact between LCO and electrolyte, improving the cycling stability. Therefore, by using the proposed electrolyte, the LCO cathode exhibits a high-capacity retention of 76.1% after 200 cycles at a high cut-off voltage of 4.6 V. This work provides a novel insight into the rational design of high-voltage and safe battery systems by adopting the flame-retardant electrolyte.

19.
Small Methods ; 7(1): e2201173, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446636

ABSTRACT

X-ray radiation damage on the measuring system has been a critical issue regularly for a long-time exposure to X-ray beam during the in operando characterizations, which is particularly severe when the applied X-ray energy is near the absorption edges (M, L, K, etc.) of the interest element. To minimize the negative effects raised by beam radiation, we employ quick X-ray absorption spectroscopy (QXAS) to study the electrochemical reaction mechanism of a Ni-rich layered structure cathode for lithium-ion batteries. With the advanced QXAS technique, the electronic structure and local coordination environment of the transition metals (TMs) are monitored in-operando with limited radiation damage. Compared to the conventional step-mode X-ray absorption spectroscopy, the QXAS can provide more reliable oxidation state change and more detailed local structure evolutions surrounding TMs (Ni and Co) in Ni-rich layered oxides. By leveraging these advantages of QXAS, we demonstrated that the Ni dominates the electrochemical process with the Co being almost electrochemically inactive. Reversible Ni ions movement between TMs sites and Li sites is also revealed by the time-resolved QXAS technique.

20.
Nat Nanotechnol ; 18(2): 168-176, 2023 02.
Article in English | MEDLINE | ID: mdl-36585515

ABSTRACT

Cotton textiles are ubiquitous in daily life and are also one of the primary mediums for transmitting viruses and bacteria. Conventional approaches to fabricating antiviral and antibacterial textiles generally load functional additives onto the surface of the fabric and/or their microfibres. However, such modifications are susceptible to deterioration after long-term use due to leaching of the additives. Here we show a different method to impregnate copper ions into the cellulose matrix to form a copper ion-textile (Cu-IT), in which the copper ions strongly coordinate with the oxygen-containing polar functional groups (for example, hydroxyl) of the cellulose chains. The Cu-IT displays high antiviral and antibacterial performance against tobacco mosaic virus and influenza A virus, and Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa and Bacillus subtilis bacteria due to the antimicrobial properties of copper. Furthermore, the strong coordination bonding of copper ions with the hydroxyl functionalities endows the Cu-IT with excellent air/water retainability and superior mechanical stability, which can meet daily use and resist repeated washing. This method to fabricate Cu-IT is cost-effective, ecofriendly and highly scalable, and this textile appears very promising for use in household products, public facilities and medical settings.


Subject(s)
Antiviral Agents , Copper , Textiles/microbiology , Anti-Bacterial Agents , Cellulose
SELECTION OF CITATIONS
SEARCH DETAIL
...