Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 403
Filter
1.
Immune Netw ; 24(2): e3, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38725674

ABSTRACT

Cigarette smoke extract (CSE)-treated mouse airway epithelial cells (MAECs)-derived exosomes accelerate the progression of chronic obstructive pulmonary disease (COPD) by upregulating triggering receptor expressed on myeloid cells 1 (TREM-1); however, the specific mechanism remains unclear. We aimed to explore the potential mechanisms of CSE-treated MAECs-derived exosomes on M1 macrophage polarization and pyroptosis in COPD. In vitro, exosomes were extracted from CSE-treated MAECs, followed by co-culture with macrophages. In vivo, mice exposed to cigarette smoke (CS) to induce COPD, followed by injection or/and intranasal instillation with oe-TREM-1 lentivirus. Lung function and pathological changes were evaluated. CD68+ cell number and the levels of iNOS, TNF-α, IL-1ß (M1 macrophage marker), and pyroptosis-related proteins (NOD-like receptor family pyrin domain containing 3, apoptosis-associated speck-like protein containing a caspase-1 recruitment domain, caspase-1, cleaved-caspase-1, gasdermin D [GSDMD], and GSDMD-N) were examined. The expression of maternally expressed gene 3 (MEG3), spleen focus forming virus proviral integration oncogene (SPI1), methyltransferase 3 (METTL3), and TREM-1 was detected and the binding relationships among them were verified. MEG3 increased N6-methyladenosine methylation of TREM-1 by recruiting SPI1 to activate METTL3. Overexpression of TREM-1 or METTL3 negated the alleviative effects of MEG3 inhibition on M1 polarization and pyroptosis. In mice exposed to CS, EXO-CSE further aggravated lung injury, M1 polarization, and pyroptosis, which were reversed by MEG3 inhibition. TREM-1 overexpression negated the palliative effects of MEG3 inhibition on COPD mouse lung injury. Collectively, CSE-treated MAECs-derived exosomal long non-coding RNA MEG3 may expedite M1 macrophage polarization and pyroptosis in COPD via the SPI1/METTL3/TREM-1 axis.

2.
J Cell Mol Med ; 28(10): e18397, 2024 May.
Article in English | MEDLINE | ID: mdl-38766687

ABSTRACT

Malignant insulinoma is an extremely rare type of functioning pancreatic neuroendocrine tumour with a high degree of malignancy and a high incidence of metastasis. However, it is still unclear how malignant insulinomas develop and metastasize. Serum amyloid P component (SAP), a member of the pentraxin protein family, is an acute-phase protein secreted by liver cells. The role of SAP in insulinoma and the related mechanism are still unknown. To determine the effect of SAP on insulinoma, we crossed Rip1-Tag2 mice, which spontaneously develop insulinoma, and SAP knockout (KO) mice to generate Rip1-Tag2;SAP-/- mice. We found that SAP deletion significantly promoted the growth, invasion and metastasis of malignant insulinoma through C-X-C motif chemokine ligand 12 (CXCL12) secreted by cancer-associated fibroblasts (CAFs). Further study showed that SAP deletion promoted CXCL12 secretion by CAFs through the CXCR4/p38/ERK signalling pathway. These findings reveal a novel role and mechanism of SAP in malignant insulinoma and provide direct evidence that SAP may be a therapeutic agent for this disease.


Subject(s)
Chemokine CXCL12 , Insulinoma , MAP Kinase Signaling System , Mice, Knockout , Receptors, CXCR4 , Animals , Insulinoma/metabolism , Insulinoma/pathology , Insulinoma/genetics , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mice , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Gene Deletion , Disease Progression , Humans , Cell Line, Tumor , Cell Proliferation
3.
J Ophthalmol ; 2024: 9943458, 2024.
Article in English | MEDLINE | ID: mdl-38800368

ABSTRACT

Introduction: To evaluate the changes of lens antidilatation, antiedema, and antienzymolysis ability after different concentrations of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide (EDC-NHS)-induced collagen cross-linking. Methods: Corneal stromal lenticules (n = 100) obtained from small incision lenticule extraction (SMILE) procedures were divided into 5 groups: no treatment (control); EDC/NHS (5%/2.5%); EDC/NHS(5%/5%); EDC/NHS (10%/5%); riboflavin and ultraviolet-A light (UVA). Collagen crosslinking was induced using EDC-NHS and UVA. Biomechanical assessments including inflation test, enzymatic degradation resistance, and light transmittance were evaluated posttreatment. Results: (1) Lenticule apex displacement ranked: control Group > UVA Group > Group (5%/5%) > Group (5%/2.5%) > Group (10%/5%) (Friedman test, p < 0.0001). (2) Light transmittance was significantly higher in the crosslinked groups versus control, with EDC/NHS superior to UVA riboflavin. After 15 minutes in PBS, light transmittance decreased due to swelling; however, crosslinked groups maintained significantly higher transmittance versus control. (3) Following crosslinking, enzymatic resistance improved significantly, with the EDC-NHS crosslinking group was significantly better than the UVA cross-linking group. Conclusions: EDC/NHS crosslinking enhanced lenticule stiffness, antiedema, and enzymatic resistance and without compromising the transparency of the lens. Moreover, EDC/NHS crosslinking efficacy exceeded UVA riboflavin crosslinking in improving lenticule biomechanical properties.

4.
ChemSusChem ; : e202400705, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818626

ABSTRACT

The vanadium redox flow battery (VRFB) holds promise for large-scale energy storage applications, despite its lower energy and power densities compared to advanced secondary batteries available today. Carbon materials are considered suitable catalyst electrodes for improving many aspects of the VRFB. However, pristine graphite structures in carbon materials are catalytically inert and require modification to activate their catalytic activity. Among the various strategies developed so far, O-functionalization and chemical doping of carbon materials are considered some of the most promising pathways to regulate their electronic structures. Building on the catalytic mechanisms involved in the VRFB, this concise review discusses recent advancements in the O-functionalization and chemical doping of carbon materials. Furthermore, it explores how these materials can be tailored and highlights future directions for developing more promising VRFBs to guide future research.

5.
J Cell Mol Med ; 28(8): e18307, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613342

ABSTRACT

Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.


Subject(s)
Mucopolysaccharidoses , Mucopolysaccharidosis III , Humans , Mucopolysaccharidosis III/genetics , Mucopolysaccharidoses/genetics , Asian People/genetics , Acetylation , China , Acetyltransferases
6.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447883

ABSTRACT

AIMS: Exchange protein directly activated by cAMP 1 (EPAC1), a major isoform of guanine nucleotide exchange factors, is highly expressed in vascular endothelia cells and regulates angiogenesis in the retina. High intratumor microvascular densities (MVD) resulting from angiogenesis is responsible for breast cancer development. Downregulation of EPAC1 in tumor cell reduces triple-negative breast cancer (TNBC)-induced angiogenesis. However, whether Epac1 expressed in vascular endothelial cells contributes to angiogenesis and tumor development of TNBC remains elusive. MAIN METHODS: We employed NY0123, a previously identified potent EPAC inhibitor, to explore the anti-angiogenic biological role of EPAC1 in vitro and in vivo through vascular endothelial cells, rat aortic ring, Matrigel plug, and chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) assays, as well as the in vivo xenograft tumor models of TNBC in both chick embryo and mice. KEY FINDINGS: Inhibiting EPAC1 in vascular endothelial cells by NY0123 significantly suppresses angiogenesis and tumor growth of TNBC. In addition, NY0123 possesses a better inhibitory efficacy than ESI-09, a reported specific EPAC inhibitor tool compound. Importantly, inhibiting EPAC1 in vascular endothelia cells regulates the typical angiogenic signaling network, which is associated with not only vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor-2 (VEGFR2) signaling, but also PI3K/AKT, MEK/ERK and Notch pathway. CONCLUSIONS: Our findings support that EPAC1 may serve as an effective anti-angiogenic therapeutic target of TNBC, and EPAC inhibitor NY0123 has the therapeutic potential to be developed for the treatment of TNBC.


Subject(s)
Guanine Nucleotide Exchange Factors , Neovascularization, Pathologic , Triple Negative Breast Neoplasms , Animals , Chick Embryo , Humans , Mice , Rats , Endothelial Cells/metabolism , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Phosphatidylinositol 3-Kinases , Triple Negative Breast Neoplasms/blood supply , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Vascular Endothelial Growth Factor A/metabolism , Neovascularization, Pathologic/drug therapy
7.
Arch Virol ; 169(4): 76, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494576

ABSTRACT

The number of individuals infected with HIV-1 among men who have sex with men (MSM) has risen rapidly in recent years in China, and the subtypes CRF01_AE, CRF07_BC, and B, as well as many novel unique recombinant forms (URFs) are prevalent among them. Co-circulation of strains among MSM populations allows the generation of circulating recombinant forms (CRFs) and URFs. In this study, we identified two new URFs from two HIV-1-positive subjects who were infected through homosexual contact in Hebei, China. Analysis of near-full-length genome sequences, using phylogenetic and recombination analysis showed that the two URFs originated from CRF01_AE, CRF07_BC, and B, and CRF01_AE segments in the backbone of the URFs were derived from cluster 4 of CRF01_AE. The CRF07_BC segments of two URFs were clustered with 07BC_N in a phylogenetic tree. The identification of novel URFs with complex genomic structures shows that it is necessary to strengthen surveillance of HIV-1 variants in MSM populations in this region.


Subject(s)
HIV Infections , HIV-1 , Sexual and Gender Minorities , Male , Humans , Homosexuality, Male , Phylogeny , HIV Infections/epidemiology , Recombination, Genetic , Sequence Analysis, DNA , Genome, Viral , China/epidemiology , HIV-1/genetics
8.
Children (Basel) ; 11(3)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539371

ABSTRACT

PURPOSE: This review systematically summarizes the studies of the relationship between primary-to-secondary school students' motor skills and academic achievement, and analyzes the relationship between gross and fine motor skills and performance in different subjects. METHOD: Five electronic databases, Web Of Science, PubMed, PsycINFO, SPORTDiscus, and Academic Search Premier, were searched in March 2023. Semi-quantitative assessment methods were used to analyze the results of the included studies. RESULTS: Seventy-eight articles were included in this systematic review. The semi-quantitative assessment results showed that gross (+, 65.0/62.5%) and fine motor skills (+, 83.3/80%) were positively correlated with overall performance and language performance, with ≥60% of the associations in the same direction. For different subjects, fine motor skills were positively correlated with students' mathematics (+, 75.0%), reading (+, 72.7%), writing (+, 66.7%), and spelling (+, 60.0%) scores. However, the association between gross motor skills and students' mathematics achievement (?, 52.8%), reading (?, 53.8%), and spelling (?, 50.0%) is uncertain, with <60% of the associations in the same direction. CONCLUSIONS: It is wise to direct our gaze toward the evolution of motor skills among students, especially primary school students. Different motor skill intervention modes should be selected in a targeted manner according to different subject achievements.

9.
iScience ; 27(4): 109408, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38523798

ABSTRACT

Post-learning sleep is essential for hippocampal memory processing, including contextual fear memory consolidation. We labeled context-encoding engram neurons in the hippocampal dentate gyrus (DG) and assessed reactivation of these neurons after fear learning. Post-learning sleep deprivation (SD) selectively disrupted reactivation of inferior blade DG engram neurons, linked to SD-induced suppression of neuronal activity in the inferior, but not superior DG blade. Subregion-specific spatial profiling of transcripts revealed that transcriptomic responses to SD differed greatly between hippocampal CA1, CA3, and DG inferior blade, superior blade, and hilus. Activity-driven transcripts, and those associated with cytoskeletal remodeling, were selectively suppressed in the inferior blade. Critically, learning-driven transcriptomic changes differed dramatically between the DG blades and were absent from all other regions. Together, these data suggest that the DG is critical for sleep-dependent memory consolidation, and that the effects of sleep loss on the hippocampus are highly subregion-specific.

10.
Front Med (Lausanne) ; 11: 1322440, 2024.
Article in English | MEDLINE | ID: mdl-38314204

ABSTRACT

Objectives: The COVID-19 pandemic imposed an enormous disease and economic burden worldwide. SARS-CoV-2 vaccination is essential to containing the pandemic. People living with HIV (PLWH) may be more vulnerable to severe COVID-19 outcomes; thus, understanding their vaccination willingness and influencing factors is helpful in developing targeted vaccination strategies. Methods: A cross-sectional study was conducted between 15 June and 30 August 2022 in Shijiazhuang, China. Variables included socio-demographic characteristics, health status characteristics, HIV-related characteristics, knowledge, and attitudes toward COVID-19 vaccination and COVID-19 vaccination status. Multivariable logistic regression was used to confirm factors associated with COVID-19 vaccination willingness among PLWH. Results: A total of 1,428 PLWH were included, with a 90.48% willingness to receive the COVID-19 vaccination. PLWH were more unwilling to receive COVID-19 vaccination for those who were female or had a fair/poor health status, had an allergic history and comorbidities, were unconvinced and unsure about the effectiveness of vaccines, were unconvinced and unsure about the safety of vaccines, were convinced and unsure about whether COVID-19 vaccination would affect ART efficacy, or did not know at least a type of domestic COVID-19 vaccine. Approximately 93.00% of PLWH have received at least one dose of the COVID-19 vaccine among PLWH, and 213 PLWH (14.92%) reported at least one adverse reaction within 7 days. Conclusion: In conclusion, our study reported a relatively high willingness to receive the COVID-19 vaccination among PLWH in Shijiazhuang. However, a small number of PLWH still held hesitancy; thus, more tailored policies or guidelines from the government should be performed to enhance the COVID-19 vaccination rate among PLWH.

11.
J Med Virol ; 96(2): e29446, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38345110

ABSTRACT

There is a paucity of data on hybrid immunity (vaccination plus breakthrough infection [BI]), especially cell-mediated responses to Omicron among immunosuppressed patients. We aim to investigate humoral and cellular responses to Omicron BA.4/5 among people living with HIV (PLWH) with/without BIs, the most prevalent variant of concern after the reopening of China. Based on our previous study, we enrolled 77 PLWH with baseline immune status of severe acute respiratory syndrome coronavirus 2 specific antibodies after inactivated vaccination. "Correlates of protection," including serological immunoassays, T cell phenotypes and memory B cells (MBC) were determined in PLWH without and with BI, together with 16 PLWH with reinfections. Higher inhibition rate of neutralizing antibodies (NAb) against BA.4/5 was elicited among PLWH with BI than those without. Omicron-reactive IL4+ CD8+ T cells were significantly elevated in PLWH experienced postvaccine infection contrasting with those did not. NAb towards wild type at baseline was associated with prolonged negative conversion time for PLWH whereas intermediate MBCs serve as protecting effectors. We uncovered that hybrid immunity intensified more protection on BA.4/5 than vaccination did. Strengthened surveillance on immunological parameters and timely clinical intervention on PLWH deficient in protection would reduce the severity and mortality in the context of coexistence with new Omicron subvariants.


Subject(s)
Breakthrough Infections , CD8-Positive T-Lymphocytes , Humans , Follow-Up Studies , Antibodies, Neutralizing , Antibodies, Viral , Immunity
12.
PLoS One ; 19(2): e0292849, 2024.
Article in English | MEDLINE | ID: mdl-38329983

ABSTRACT

With the advancement of touch screen technology, the application of touch screens in civil aircraft cockpits has become increasingly popular. However, further analysis and research are required to fully promote its applications. The paper researched the usability of touch screens in aircraft cockpit considering the operation performance and subjective NASA-TLX workload evaluation, conducted experimental research on three touch gestures: click, drag, and zoom. Additionally, a comparative analysis was conducted on the touch performance under different layouts, positions, touch sizes, dragging direction angles, and zoom multiples. The touch performance indicators include operation time, error rate, operation speed, and workload. The experimental results show that the 21 mm size has the minimum operation time and workload, and 18 mm size has the lowest error rate in the clicking tasks. Additionally, the performance and workload of the captain's layout are better than those of the co-pilot's layout, and the performance of the center console position is best. The operation speed of the dragging tasks is faster when performed at position R3 compared to other positions. The dragging moving angles with better operation speed are 80°-190° and 250°-290°. The operation performance and workload of the zooming tasks vary depending on the zoom multiples. As the multiple increases, the operation time and workload also increase. There is no difference in operation performance or workload between zooming in and zooming out. The paper provides experimental support and suggestions based on human operation and subjective NASA-TLX workload evaluation for the application of touch screens in civil aircraft cockpits.


Subject(s)
Aircraft , Workload , Humans , Gestures , Technology , Task Performance and Analysis
13.
Adv Mater ; 36(16): e2311918, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193380

ABSTRACT

Surfaces display discontinuities in the kesterite-based polycrystalline films can produce large defect densities, including strained and dangling bonds. These physical defects tend to introduce electronic defects and surface states, which can greatly promote nonradiative recombination of electron-hole pairs and damage device performance. Here, an effective chelation strategy is reported to suppress these harmful physical defects related to unterminated Cu, Zn, and Sn sites by modifying the surface of Cu2ZnSn(S,Se)4 (CZTSSe) films with sodium diethyldithiocarbamate (NaDDTC). The conjoint theoretical calculations and experimental results reveal that the NaDDTC molecules can be coordinate to surface metal sites of CZTSSe films via robust bidentate chelating interactions, effectively reducing surface undercoordinated defects and passivating the electron trap states. Consequently, the solar cell efficiency of the NaDDTC-treated device is increased to as high as 13.77% under 100 mW cm-2 illumination, with significant improvement in fill factor and open-circuit voltage. This surface chelation strategy provides strong surface termination and defect passivation for further development and application of kesterite-based photovoltaics.

14.
J Clin Ultrasound ; 52(4): 464-469, 2024 May.
Article in English | MEDLINE | ID: mdl-38265171

ABSTRACT

A pregnant woman with hydatidiform mole in one twin was misdiagnosed as one of the twins with embryonic arrest. She chose to terminate the pregnancy and developed distant lung metastasis. After chemotherapy, she eventually recovered. This article systematically analyzes the diagnosis and treatment of hydatidiform mole in one twin to increase the awareness and reduce misdiagnosis of the disease.


Subject(s)
Hydatidiform Mole , Pregnancy, Twin , Uterine Neoplasms , Humans , Hydatidiform Mole/diagnostic imaging , Female , Pregnancy , Uterine Neoplasms/diagnostic imaging , Adult , Ultrasonography, Prenatal/methods
15.
Sci Rep ; 14(1): 1856, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38253569

ABSTRACT

Understanding and accurately measuring resilience among Chinese civil aviation pilots is imperative, especially concerning the psychological impact of distressing events on their well-being and aviation safety. Despite the necessity, a validated and tailored measurement tool specific to this demographic is absent. Addressing this gap, this study built on the widely used CD-RISC-25 to analyze and modify its applicability to Chinese civil aviation pilots. Utilizing CD-RISC-25 survey data from 231 Chinese pilots, correlational and differential analyses identified items 3 and 20 as incongruent with this population's resilience profile. Subsequently, factor analysis derived a distinct two-factor resilience psychological framework labeled "Decisiveness" and "Adaptability", which diverged from the structure found in American female pilots and the broader Chinese populace. Additionally, to further accurately identify the measurement characteristics of this 2-factor measurement model, this study introduced Generalized Theory and Item Response Theory, two modern measurement analysis theories, to comprehensively analyze the overall reliability of the measurement and issues with individual items. Results showed that the 2-factor model exhibited high reliability, with generalizability coefficient reaching 0.89503 and dependability coefficient reaching 0.88496, indicating the 2-factor measurement questionnaire can be effectively utilized for relative and absolute comparison of Chinese civil aviation pilot resilience. However, items in Factor 2 provided less information and have larger room for optimization than those in Factor 1, implying item option redesign may be beneficial. Consequently, this study culminates in the creation of a more accurate and reliable two-factor psychological resilience measurement tool tailored for Chinese civil aviation pilots, while exploring directions for optimization. By facilitating early identification of individuals with lower resilience and enabling the evaluation of intervention efficacy, this tool aims to positively impact pilot psychological health and aviation safety in the context of grief and trauma following distressing events.


Subject(s)
Aviation , Psychological Tests , Resilience, Psychological , Humans , Female , Reproducibility of Results , China
16.
Clin Infect Dis ; 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38236137

ABSTRACT

BACKGROUND: Most international treatment guidelines recommend rapid initiation of antiretroviral therapy (ART) for people newly diagnosed with HIV-1 infection, but experiences with rapid ART initiation remain limited in China. We aimed to evaluate the efficacy and safety of efavirenz (400-mg) plus lamivudine and tenofovir disoproxil fumarate (EFV + 3TC + TDF) versus coformulated bictegravir, emtricitabine, tenofovir alafenamide (BIC/FTC/TAF) in rapid ART initiation among HIV-positive men who have sex with men (MSM). METHODS: This multicenter, open-label, randomized clinical trial enrolled MSM aged ≥18 years to start ART within 14 days of confirmed HIV diagnosis. The participants were randomly assigned in a 1:1 ratio to receive EFV(400-mg) + 3TC + TDF or BIC/FTC/TAF. The primary end point was viral suppression (<50 copies/ml) at 48 weeks per FDA Snapshot analysis. RESULTS: Between March 2021 and July 2022, 300 participants were enrolled; 154 were assigned to receive EFV + 3TC + TDF (EFV group) and 146 BIC/FTC/TAF (BIC group). At week 48, 118 (79.2%) and 140 (95.9%) participants in the EFV and BIC group, respectively, were retained in care with viral suppression; and 24 (16.1%) and 1 (0.7%) participant in the EFV and BIC group (p < 0.001), respectively, discontinued treatment due to adverse effects, death, or loss to follow-up. The median increase of CD4 count was 181 and 223 cells/µL (p = 0.020), respectively, for the EFV and BIC group, at week 48. The overall incidence of adverse effects was significantly higher for the EFV group (65.8% vs 37.7%, P < 0.001). CONCLUSION: BIC/FTC/TAF was more efficacious and safer than EFV(400-mg) + 3TC + TDF for rapid ART initiation among HIV-positive MSM in China.

17.
J Mol Neurosci ; 74(1): 12, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236354

ABSTRACT

Autism spectrum disorder (ASD) is a prevalent neurodevelopmental disorder with a broad spectrum of symptoms and prognoses. Effective therapy requires understanding this variability. ASD children's cognitive and immunological development may depend on iron homoeostasis. This study employs a machine learning model that focuses on iron metabolism hub genes to identify ASD subgroups and describe immune infiltration patterns. A total of 97 control and 148 ASD samples were obtained from the GEO database. Differentially expressed genes (DEGs) and an iron metabolism gene collection achieved the intersection of 25 genes. Unsupervised cluster analysis determined molecular subgroups in individuals with ASD based on 25 genes related to iron metabolism. We assessed gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, gene set variation analysis (GSVA), and immune infiltration analysis to compare iron metabolism subtype effects. We employed machine learning to identify subtype-predicting hub genes and utilized both training and validation sets to assess gene subtype prediction accuracy. ASD can be classified into two iron-metabolizing molecular clusters. Metabolic enrichment pathways differed between clusters. Immune infiltration showed that clusters differed immunologically. Cluster 2 had better immunological scores and more immune cells, indicating a stronger immune response. Machine learning screening identified SELENBP1 and CAND1 as important genes in ASD's iron metabolism signaling pathway. These genes express in the brain and have AUC values over 0.8, implying significant predictive power. The present study introduces iron metabolism signaling pathway indicators to predict ASD subtypes. ASD is linked to immune cell infiltration and iron metabolism disorders.


Subject(s)
Autism Spectrum Disorder , Child , Humans , Autism Spectrum Disorder/genetics , Homeostasis , Brain , Databases, Factual , Iron
18.
Diabetes Res Clin Pract ; 207: 111036, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38049036

ABSTRACT

AIMS: This study examined the association between hypoglycemia and mild cognitive impairment (MCI) among patients with type 2 diabetes mellitus (T2DM) and identified risk factors for MCI in patients with hypoglycemia. METHODS: In this retrospective study, 328 patients with T2DM were screened in 2019 and followed up in 2022. Cognitive performance was assessed using the Montreal Cognitive Assessment (MoCA). The diagnosis of MCI was based on established criteria. Risk ratio (RR) with 95 % confidence intervals (CI) was calculated to estimate the risk of MCI. Univariate and multivariate logistic regression analyses were conducted to identify risk factors for MCI in those with hypoglycemia. RESULTS: Patients with hypoglycemia had lower cognitive performance 3 years later. The RR of MCI was 2.221 (95 % CI 1.269-3.885). Multivariate logistic analysis showed that low grip strength, existing diabetic retinopathy (DR), and multiple hypoglycemia episodes were associated with higher odds of MCI in patients with hypoglycemia (adjusted odds ratio [OR] 0.909 [95 % CI 0.859-0.963]), 3.078 [95 % CI 1.158-12.358], and 4.642 [95 % CI 1.284-16.776], respectively, all P < 0.05). CONCLUSIONS: Hypoglycemia increased MCI risk among patients with T2DM. Low grip strength, DR, and multiple hypoglycemia episodes may be potential risk factors for hypoglycemia-associated MCI.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Type 2 , Hypoglycemia , Humans , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/psychology , Retrospective Studies , Risk Factors , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Hypoglycemia/complications , Hypoglycemia/epidemiology
19.
Small ; 20(22): e2309253, 2024 May.
Article in English | MEDLINE | ID: mdl-38126674

ABSTRACT

Atomic thick 2D materials hold great potential as building blocks to construct highly permeable membranes, yet the permeability of laminar 2D material membranes is still limited by their irregularity sheep track-like interlayer channels. Herein, a supramolecular-mediated strategy to induce the regular assembly of high-throughput 2D nanofluidic channels based on host-guest interactions is proposed. Inspired by the characteristics of motorways, supramolecular-mediated ultrathin 2D membranes with broad and continuous regular water transport channels are successfully constructed using graphene oxide (GO) as an example. The prepared membrane achieves an ultrahigh water permeability (369.94 LMH bar-1) more than six times higher than that of the original membranes while maintaining dye rejection above 98.5%, which outperforms the reported 2D membranes. Characterization and simulation results show that the introduction of hyaluronate-grafted ß-cyclodextrin not only expands the interlayer channels of GO membranes but also enables the membranes to operate stably under harsh conditions with the help of host-guest interactions. This universal supramolecular assembly strategy provides new opportunities for the preparation of 2D membranes with high separation performance and reliable and stable nanofluidic channels.

20.
Environ Res ; 244: 117935, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38103781

ABSTRACT

Nanofiltration (NF) membranes, extensively used in advanced wastewater treatment, have broad application prospects for the removal of emerging trace organic micropollutants (MPs). The treatment performance is affected by several factors, such as the properties of NF membranes, characteristics of target MPs, and operating conditions of the NF system concerning MP rejection. However, quantitative studies on different contributors in this context are limited. To fill the knowledge gap, this study aims to assess critical impact factors controlling MP rejection and develop a feasible model for MP removal prediction. The mini-review firstly summarized membrane pore size, membrane zeta potential, and the normalized molecular size (λ = rs/rp), showeing better individual relationships with MP rejection by NF membranes. The Lindeman-Merenda-Gold model was used to quantitatively assess the relative importance of all summarized impact factors. The results showed that membrane pore size and operating pressure were the high impact factors with the highest relative contribution rates to MP rejection of 32.11% and 25.57%, respectively. Moderate impact factors included membrane zeta potential, solution pH, and molecular radius with relative contribution rates of 10.15%, 8.17%, and 7.83%, respectively. The remaining low impact factors, including MP charge, molecular weight, logKow, pKa and crossflow rate, comprised all the remaining contribution rates of 16.19% through the model calculation. Furthermore, based on the results and data availabilities from references, the machine learning-based random forest regression model was trained with a relatively low root mean squared error and mean absolute error of 12.22% and 6.92%, respectively. The developed model was then successfully applied to predict MPs' rejections by NF membranes. These findings provide valuable insights that can be applied in the future to optimize NF membrane designs, operation, and prediction in terms of removing micropollutants.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/chemistry , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...