Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Complement Med Ther ; 24(1): 219, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849824

ABSTRACT

Huanglian Jiedu Decoction (HJD) is a well-known Traditional Chinese Medicine formula that has been used for liver protection in thousands of years. However, the therapeutic effects and mechanisms of HJD in treating drug-induced liver injury (DILI) remain unknown. In this study, a total of 26 genes related to both HJD and DILI were identified, which are corresponding to a total of 41 potential active compounds in HJD. KEGG analysis revealed that Tryptophan metabolism pathway is particularly important. The overlapped genes from KEGG and GO analysis indicated the significance of CYP1A1, CYP1A2, and CYP1B1. Experimental results confirmed that HJD has a protective effect on DILI through Tryptophan metabolism pathway. In addition, the active ingredients Corymbosin, and Moslosooflavone were found to have relative strong intensity in UPLC-Q-TOF-MS/MS analysis, showing interactions with CYP1A1, CYP1A2, and CYP1B1 through molecule docking. These findings could provide insights into the treatment effects of HJD on DILI.


Subject(s)
Chemical and Drug Induced Liver Injury , Drugs, Chinese Herbal , Molecular Docking Simulation , Network Pharmacology , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Chemical and Drug Induced Liver Injury/drug therapy , Humans , Animals , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP1A2/drug effects
2.
Free Radic Biol Med ; 212: 22-33, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38101584

ABSTRACT

Cisplatin is an effective chemotherapy drug widely used in the treatment of various solid tumors. However, the clinical usage of cisplatin is limited by its nephrotoxicity. Isorhamnetin, a natural flavanol compound, displays remarkable pharmacological effects, including anti-inflammatory and anti-oxidation. In this study, we aimed to investigate the potential of isorhamnetin in alleviating acute kidney injury induced by cisplatin. In vitro study showed that isorhamnetin significantly suppressed the cytotoxic effects of cisplatin on human tubular epithelial cells. Furthermore, isorhamnetin exerted significantly inhibitory effects on cisplatin-induced apoptosis and inflammatory response. In acute kidney injury mice induced by a single intraperitoneal injection with 20 mg/kg cisplatin, oral administration of isorhamnetin two days before or 2 h after cisplatin injection effectively ameliorated renal function and renal tubule injury. Transcriptomics RNA-seq analysis of the mice kidney tissues suggested that isorhamnetin treatment may protect against cisplatin-induced nephrotoxicity via PGC-1α mediated fatty acid oxidation. Isorhamnetin achieved significant enhancements in the lipid clearance, ATP level, as well as the expression of PGC-1α and its downstream target genes PPARα and CPT1A, which were otherwise impaired by cisplatin. In addition, the protection effects of isorhamnetin against cisplatin-induced nephrotoxicity were abolished by a PGC-1α inhibitor, SR-18292. In conclusion, our findings indicate that isorhamnetin could protect against cisplatin-induced acute kidney injury by inducing PGC-1α-dependent reprogramming of fatty acid oxidation, which highlights the clinical potential of isorhamnetin as a therapeutic approach for the management of cisplatin-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury , Antineoplastic Agents , Quercetin/analogs & derivatives , Mice , Humans , Animals , Cisplatin/toxicity , Antineoplastic Agents/toxicity , Antineoplastic Agents/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Kidney/metabolism , Apoptosis , Fatty Acids/metabolism
3.
Front Pharmacol ; 13: 1036732, 2022.
Article in English | MEDLINE | ID: mdl-36532730

ABSTRACT

Objective: Curcumol is one of the major active ingredients isolated from the traditional Chinese medicine Curcumae Rhizoma and is reported to exhibit various bioactivities, such as anti-tumor and anti-liver fibrosis effects. However, studies of curcumol pharmacokinetics and tissue distribution are currently lacking. This study aims to characterize the pharmacokinetics, tissue distribution, and protein binding rate of curcumol. Methods: Pharmacokinetics properties of curcumol were investigated afte doses of 10, 40, and 80 mg/kg of curcumol for rats and a single dose of 2.0 mg/kg curcumol was given to rats via intravenous administration to investigate bioavailability. Tissue distribution was investigated after a single dose of 40 mg/kg of orally administered curcumol. Plasma protein binding of curcumol was studied in vitro via the rapid equilibrium dialysis system. Bound and unbound curcumol in rat plasma were analyzed to calculate the plasma protein binding rate. A UHPLC-MS/MS method was developed and validated to determine curcumol in rat plasma and tissues and applied to study the pharmacokinetics, tissue distribution, and plasma protein binding in rats. Results: After oral administration of 10, 40, and 80 mg/kg curcumol, results indicated a rapid absorption and quick elimination of curcumol in rats. The bioavailability ranging from 9.2% to 13.1% was calculated based on the area under the curves (AUC) of oral and intravenous administration of curcumol. During tissue distribution, most organs observed a maximum concentration of curcumol within 0.5-1.0 h. A high accumulation of curcumol was found in the small intestine, colon, liver, and kidney. Moreover, high protein binding rates ranging from 85.6% to 93.4% of curcumol were observed in rat plasma. Conclusion: This study characterized the pharmacokinetics, tissue distribution, and protein binding rates of curcumol in rats for the first time, which can provide a solid foundation for research into the mechanisms of curcumol's biological function and clinical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...