Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Agric Food Chem ; 72(18): 10163-10178, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38653191

ABSTRACT

Oxalate decarboxylase (OXDC) is a typical Mn2+/Mn3+ dependent metal enzyme and splits oxalate to formate and CO2 without any organic cofactors. Fungi and bacteria are the main organisms expressing the OXDC gene, but with a significantly different mechanism of gene expression and regulation. Many articles reported its potential applications in the clinical treatment of hyperoxaluria, low-oxalate food processing, degradation of oxalate salt deposits, oxalate acid diagnostics, biocontrol, biodemulsifier, and electrochemical oxidation. However, some questions still remain to be clarified about the role of substrate binding and/or protein environment in modulating the redox properties of enzyme-bound Mn(II)/Mn(III), the nature of dioxygen involved in the catalytic mechanism, and how OXDC acquires Mn(II) /Mn(III). This review mainly summarizes its biochemical and structure characteristics, gene expression and regulation, and catalysis mechanism. We also deep-mined oxalate decarboxylase gene data from National Center for Biotechnology Information to give some insights to explore new OXDC with diverse biochemical properties.


Subject(s)
Bacteria , Carboxy-Lyases , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Carboxy-Lyases/chemistry , Bacteria/genetics , Bacteria/enzymology , Bacteria/metabolism , Fungi/genetics , Fungi/enzymology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Biocatalysis , Oxalates/metabolism , Oxalates/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Gene Expression Regulation, Enzymologic , Humans , Catalysis , Animals
2.
Cell Rep ; 42(10): 113304, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37862165

ABSTRACT

The itch-scratching cycle is mediated by neural dynamics in the brain. However, our understanding of the neural dynamics during this cycle remains limited. In this study, we examine the neural dynamics of 126 mouse brain areas by measuring the calcium signal using fiber photometry. We present numerous response patterns in the mouse brain during the itch-scratching cycle. Interestingly, we find that a group of brain areas exhibit activation only at the end of histamine-induced scratching behavior. Additionally, several brain areas exhibit transient activation at the onset of scratching induced by chloroquine. Both histamine- and chloroquine-induced itch evoke diverse response patterns across the mouse brain. In summary, our study provides a comprehensive dataset for the diverse activity pattern of mouse brain during the itch-scratching cycle, paving the way for further exploration into the neural mechanisms underlying the itch-scratching cycle.


Subject(s)
Histamine , Pruritus , Mice , Animals , Pruritus/chemically induced , Brain , Chloroquine/pharmacology
3.
Mol Cell ; 82(18): 3453-3467.e14, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35961308

ABSTRACT

Membrane protein clients of endoplasmic reticulum (ER)-associated degradation must be retrotranslocated from the ER membrane by the AAA-ATPase p97 for proteasomal degradation. Before direct engagement with p97, client transmembrane domains (TMDs) that have partially or fully crossed the membrane must be constantly shielded to avoid non-native interactions. How client TMDs are seamlessly escorted from the membrane to p97 is unknown. Here, we identified ER-anchored TMUB1 as a TMD-specific escortase. TMUB1 interacts with the TMD of clients within the membrane and holds ∼10-14 residues of a hydrophobic sequence that is exposed out of membrane, using its transmembrane and cytosolic regions, respectively. The ubiquitin-like domain of TMUB1 recruits p97, which can pull client TMDs from bound TMUB1 into the cytosol. The disruption of TMUB1 escortase activity impairs retrotranslocation and stabilizes retrotranslocating intermediates of client proteins within the ER membrane. Thus, TMUB1 promotes TMD segregation by safeguarding the TMD movement from the membrane to p97.


Subject(s)
Endoplasmic Reticulum , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Cell Cycle Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Ubiquitin/metabolism , Valosin Containing Protein/genetics , Valosin Containing Protein/metabolism
4.
Trends Neurosci ; 45(8): 594-607, 2022 08.
Article in English | MEDLINE | ID: mdl-35701247

ABSTRACT

The somatosensory system processes diverse types of information including mechanical, thermal, and chemical signals. It has an essential role in sensory perception and body movement and, thus, is crucial for organism survival. The neural network for processing somatosensory information comprises multiple key nodes. Spinal projection neurons represent the key node for transmitting somatosensory information from the periphery to the brain. Although the anatomy of spinal ascending pathways has been characterized, the mechanisms underlying somatosensory information processing by spinal ascending pathways are incompletely understood. Recent studies have begun to reveal the diversity of spinal ascending pathways and their functional roles in somatosensory information processing. Here, we review the anatomic, molecular, and functional characteristics of spinal ascending pathways.


Subject(s)
Interneurons , Spinal Cord , Brain , Humans , Interneurons/physiology , Sensation , Spinal Cord/physiology
5.
Neuroscience ; 488: 20-31, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35218885

ABSTRACT

Neuropathic pain is a type of chronic pain with complex mechanisms, and current treatments have shown limited success in treating patients suffering from chronic pain. Accumulating evidence has shown that the pathogenesis of neuropathic pain is mediated by the plasticity of excitatory neurons in the dorsal horn of the spinal cord, which provides insights into the treatment of hyperalgesia. In this study, we found that Schnurri-2 (Shn2) was significantly upregulated in the L4-L6 segments of the spinal cord of C57 mice with spared nerve injury, which was accompanied by an increase in GluN2D subunit and glutamate receptor subunit 1 (GluR1) levels. Knocking down the expression of Shn2 using a lentivirus in the spinal cord decreased the GluN2D subunit and GluR1 levels in spared nerve injury mice and eventually alleviated mechanical allodynia. In summary, Shn2 regulates neuropathic pain, promotes the upregulation of GluN2D in glutamatergic neurons and increases the accumulation of GluR1 in excitatory neurons. Taken together, our study provides a new underlying mechanism for the development of neuropathic pain.


Subject(s)
Chronic Pain , DNA-Binding Proteins , Neuralgia , Receptors, Glutamate , Animals , Chronic Pain/metabolism , DNA-Binding Proteins/metabolism , Hyperalgesia/metabolism , Mice , Neuralgia/metabolism , Receptors, Glutamate/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism
6.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544877

ABSTRACT

Necroptosis is a form of regulated necrosis mediated by the formation of the necrosome, composed of the RIPK1/RIPK3/MLKL complex. Here, we developed a proximity ligation assay (PLA) that allows in situ visualization of necrosomes in necroptotic cells and in vivo. Using PLA assay, we show that necrosomes can be found in close proximity to the endoplasmic reticulum (ER). Furthermore, we show that necroptosis activates ER stress sensors, PERK, IRE1α, and ATF6 in a RIPK1-RIPK3-MLKL axis-dependent manner. Activated MLKL can be translocated to the ER membrane to directly initiate the activation of ER stress signaling. The activation of IRE1α in necroptosis promotes the splicing of XBP1, and the subsequent incorporation of spliced XBP1 messenger RNA (mRNA) into extracellular vesicles (EVs). Finally, we show that unlike that of a conventional ER stress response, necroptosis promotes the activation of unfolded protein response (UPR) sensors without affecting their binding of GRP78. Our study reveals a signaling pathway that links MLKL activation in necroptosis to an unconventional ER stress response.


Subject(s)
Endoribonucleases/metabolism , Heat-Shock Proteins/metabolism , Necroptosis , Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , eIF-2 Kinase/metabolism , Apoptosis , Endoplasmic Reticulum , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoribonucleases/genetics , HT29 Cells , Heat-Shock Proteins/genetics , Humans , Protein Serine-Threonine Kinases/genetics , RNA Splicing , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , X-Box Binding Protein 1/genetics , eIF-2 Kinase/genetics
7.
Aging (Albany NY) ; 12(20): 20862-20879, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33065553

ABSTRACT

Triggering receptor expressed on myeloid cells 2 (TREM2) has been shown with a neuroprotective function against inflammation and neuronal injury in Alzheimer's disease (AD). However, the TREM2 induced anti-inflammatory mechanism is still not well known. In this study it has been demonstrated that the expression of TREM2 was upregulated in hippocampus of 5xFAD mice, whereas TREM2 knock-out mediated by AAV significantly increased the levels of pro-inflammatory cytokines and aggravated cognitive defect. Additionally, FoxO3a, a downstream member of the PI3K/AKT pathway, could be activated by TREM2 defect via the PI3K/AKT signaling in 5xFAD mice. That suggests TREM2-induced protection is associated with the PI3K-FoxO3a axis. On the contrary, overexpression of TREM2 alleviated the LPS-induced inflammatory response and induced M2 phenotype microglia in vitro. This phenomenon can be abolished by applying the PI3K inhibitor LY294002, suggesting FoxO3a not only participates in TREM2-induced anti-inflammation response, but is also involved in regulating the phenotype of microglia. Taken together, our results show that the protective functions of TREM2, both in inflammatory response and cognitive impairment as well as in the decrease of M1 phenotype microglia, are related to PI3K/AKT/FoxO3a signaling pathway in AD mice.


Subject(s)
Alzheimer Disease/complications , Cognitive Dysfunction/etiology , Forkhead Box Protein O3/physiology , Inflammation/etiology , Membrane Glycoproteins/physiology , Neuroprotection , Phosphatidylinositol 3-Kinases/physiology , Proto-Oncogene Proteins c-akt/physiology , Receptors, Immunologic/physiology , Signal Transduction , Animals , Brain , Cognitive Dysfunction/prevention & control , Inflammation/prevention & control , Male , Mice , Mice, Inbred BALB C , Microglia/physiology
8.
Food Sci Nutr ; 8(8): 4463-4471, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32884726

ABSTRACT

To investigate the flavor peptides of beef broth obtained under optimized stewing conditions, separation procedures such as ultrafiltration, Sephadex G-15 column chromatography, and reversed-phase high-performance liquid chromatography were employed to isolate the umami taste peptides. Sensory evaluation was combined with liquid chromatography-mass spectrometry to detect the flavor peptides. The optimization of the stewing process conditions was studied using the orthogonal method, which indicated that time had the most significant effect on the taste efficiency of sensory evaluation, followed by the mixed spices, sucrose, and salt. The optimized cooking conditions included 3.5 hr of cooking time, 1.800 g of sucrose, 2.125 g of salt, and 1.500 g of mixed spices. The results showed that six peptides, including SDEEVEH, AEVPEVH, GVDNPGHP, GSDGSVGPVGP, SDGSVGPVGP, and DEAGPSIVH, were detected in sample X1M1; and seven peptides, including VAPEEHPT, VVSNPVDIL, VGGNVDYK, PFGNTHN, EAGPSIVHR, VDFDDIQK, and DEAGPSIVH, were detected in sample X2M2. This study compared the flavor peptides in stewed beef before and after the optimization, and thus provided a basis for the improvement of beef processing technology.

9.
Mol Cell ; 79(2): 320-331.e9, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32645369

ABSTRACT

Valosin-containing protein (VCP)/p97 is an AAA-ATPase that extracts polyubiquitinated substrates from multimeric macromolecular complexes and biological membranes for proteasomal degradation. During p97-mediated extraction, the substrate is largely deubiquitinated as it is threaded through the p97 central pore. How p97-extracted substrates are targeted to the proteasome with few or no ubiquitins is unknown. Here, we report that p97-extracted membrane proteins undergo a second round of ubiquitination catalyzed by the cytosolic ubiquitin ligase RNF126. RNF126 interacts with transmembrane-domain-specific chaperone BAG6, which captures p97-liberated substrates. RNF126 depletion in cells diminishes the ubiquitination of extracted membrane proteins, slows down their turnover, and dramatically stabilizes otherwise transient intermediates in the cytosol. We reconstitute the reubiquitination of a p97-extracted, misfolded multispanning membrane protein with purified factors. Our results demonstrate that p97-extracted substrates need to rapidly engage ubiquitin ligase-chaperone pairs that rebuild the ubiquitin signal for proteasome targeting to prevent harmful accumulation of unfolded intermediates.


Subject(s)
Membrane Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Valosin Containing Protein/metabolism , Catalysis , Cytosol/metabolism , HEK293 Cells , Humans , Molecular Chaperones/metabolism , Protein Folding , Proteolysis , Solubility , Ubiquitination
10.
Neuron ; 107(5): 909-923.e6, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32649865

ABSTRACT

The parabrachial nucleus (PBN) is one of the major targets of spinal projection neurons and plays important roles in pain. However, the architecture of the spinoparabrachial pathway underlying its functional role in nociceptive information processing remains elusive. Here, we report that the PBN directly relays nociceptive signals from the spinal cord to the intralaminar thalamic nuclei (ILN). We demonstrate that the spinal cord connects with the PBN in a bilateral manner and that the ipsilateral spinoparabrachial pathway is critical for nocifensive behavior. We identify Tacr1-expressing neurons as the major neuronal subtype in the PBN that receives direct spinal input and show that these neurons are critical for processing nociceptive information. Furthermore, PBN neurons receiving spinal input form functional monosynaptic excitatory connections with neurons in the ILN, but not the amygdala. Together, our results delineate the neural circuit underlying nocifensive behavior, providing crucial insight into the circuit mechanism underlying nociceptive information processing.


Subject(s)
Afferent Pathways , Functional Laterality/physiology , Intralaminar Thalamic Nuclei , Nociception/physiology , Parabrachial Nucleus , Afferent Pathways/cytology , Afferent Pathways/physiology , Amygdala , Animals , Intralaminar Thalamic Nuclei/cytology , Intralaminar Thalamic Nuclei/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Neurons/cytology , Neurons/physiology , Parabrachial Nucleus/cytology , Parabrachial Nucleus/physiology , Spinal Cord/cytology , Spinal Cord/physiology
11.
Cell ; 181(3): 590-603.e16, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32272060

ABSTRACT

Conversion of glial cells into functional neurons represents a potential therapeutic approach for replenishing neuronal loss associated with neurodegenerative diseases and brain injury. Previous attempts in this area using expression of transcription factors were hindered by the low conversion efficiency and failure of generating desired neuronal types in vivo. Here, we report that downregulation of a single RNA-binding protein, polypyrimidine tract-binding protein 1 (Ptbp1), using in vivo viral delivery of a recently developed RNA-targeting CRISPR system CasRx, resulted in the conversion of Müller glia into retinal ganglion cells (RGCs) with a high efficiency, leading to the alleviation of disease symptoms associated with RGC loss. Furthermore, this approach also induced neurons with dopaminergic features in the striatum and alleviated motor defects in a Parkinson's disease mouse model. Thus, glia-to-neuron conversion by CasRx-mediated Ptbp1 knockdown represents a promising in vivo genetic approach for treating a variety of disorders due to neuronal loss.


Subject(s)
Neurogenesis/physiology , Neuroglia/metabolism , Retinal Ganglion Cells/metabolism , Animals , CRISPR-Cas Systems/physiology , Cell Differentiation/physiology , Cells, Cultured , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Disease Models, Animal , Dopamine/metabolism , Gene Expression Regulation/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Male , Mice , Mice, Inbred C57BL , Nervous System Diseases/metabolism , Neurons/metabolism , Parkinson Disease/metabolism , Polypyrimidine Tract-Binding Protein/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Retinal Ganglion Cells/physiology
12.
Food Sci Nutr ; 8(2): 955-964, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32148804

ABSTRACT

The aims of this study were to investigate the effect of stewing process on the content of taste compounds in stewing beef broth. The amino acids, 5'-nucleotides, and organic acids in stewing beef broth were determined by HPLC. The results showed that the contents of four 5'-nucleotides in raw beef were significantly lower than that in stewed beef broth. The addition of spices, salt, and sucrose was beneficial to promote the release of amino acid in beef broth. The highest contents of umami, sweet amino acid, and total amino acid were 907.67, 2930.11, and 5088.76 µg/g in stewed beef broth with salt addition, and 1085.10, 3367.48, and 5595.20 µg/g with sucrose addition. The contents of those in the stewed beef optimal group (s-b-o) were 7008.53, 34007.67, and 49282.82 µg/g, respectively, which was far higher than that with salt addition and sucrose addition. The content of total amino acid and total organic acid was significantly higher in s-b-o-o than in s-b-o. The proper amount of blend oil was beneficial to the release of flavor substances in stewed beef broth. The EUC value of the stewed beef blank group (s-b-b) was 3.50 g MSG/100 g. The addition of spices could significantly increase the EUC of stewed beef broth. The TAVs of 8 compounds were more than 1 in the sample of s-b-o-o, including Asp, Glu, Pro, Ala, Val, Met, Arg, and tartaric acid. These 8 compounds contribute more to the taste of stewed beef broth.

13.
J Biol Chem ; 294(52): 20084-20096, 2019 12 27.
Article in English | MEDLINE | ID: mdl-31748412

ABSTRACT

The endoplasmic reticulum-associated degradation (ERAD) pathway mediates the endoplasmic reticulum-to-cytosol retrotranslocation of defective proteins through protein complexes called retrotranslocons. Defective proteins usually have complex conformations and topologies, and it is unclear how ERAD can thread these conformationally diverse protein substrates through the retrotranslocons. Here, we investigated the substrate conformation flexibility necessary for transport via retrotranslocons on the ERAD-L, ERAD-M, and HIV-encoded protein Vpu-hijacked ERAD branches. To this end, we appended various ERAD substrates with specific domains whose conformations were tunable in flexibility or tightness by binding to appropriate ligands. With this technique, we could define the capacity of specific retrotranslocons in disentangling very tight, less tight but well-folded, and unstructured conformations. The Hrd1 complex, the retrotranslocon on the ERAD-L branch, permitted the passage of substrates with a proteinase K-resistant tight conformation, whereas the E3 ligase gp78-mediated ERAD-M allowed passage only of nearly completely disordered but not well-folded substrates and thus may have the least unfoldase activity. Vpu-mediated ERAD, containing a potential retrotranslocon, could unfold well-folded substrates for successful retrotranslocation. However, substrate retrotranslocation in Vpu-mediated ERAD was blocked by enhanced conformational tightness of the substrate. On the basis of these findings, we propose a mechanism underlying polypeptide movement through the endoplasmic reticulum membrane. We anticipate that our biochemical system paves the way for identifying the factors necessary for the retrotranslocation of membrane proteins.


Subject(s)
Endoplasmic Reticulum-Associated Degradation , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum-Associated Degradation/drug effects , HEK293 Cells , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Leupeptins/pharmacology , Proteasome Endopeptidase Complex/metabolism , Protein Unfolding , Receptors, Autocrine Motility Factor/genetics , Receptors, Autocrine Motility Factor/metabolism , Substrate Specificity , Trimetrexate/pharmacology , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Viral Regulatory and Accessory Proteins/genetics , Viral Regulatory and Accessory Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...