Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Immunol ; 164: 66-78, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37979473

ABSTRACT

BACKGROUND: Hepatic ischemia-reperfusion (I/R) injury involves inflammatory necrosis of liver cells as a significant pathological mechanism. Catapol possesses anti-inflammatory activity that is extracted from the traditional Chinese medicine, Rehmannia glutinosa. METHODS: The liver function and histopathology, Oxidative stress, and aseptic inflammatory responses were assessed in vivo, and the strongest dose group was selected. For mechanism, the expression of miR-410-3p, HMGB1, and TLR-4/NF-κB signaling pathways was detected. The dual luciferase assay can verify the targeting relationship between miR-410-3p and HMGB1. Knockdown of miR-410-3p in L02 cells is applied in interference experiments. RESULTS: CAT pre-treatment significantly decreased the liver function markers alanine and aspartate aminotransferases and reduced the areas of hemorrhage and necrosis induced by hepatic I/R injury. Additionally, it reduced the aseptic inflammatory response and oxidative stress, with the strongest protective effect observed in the high-dose CAT group. Mechanistically, CAT downregulates HMGB1, inhibits TLR-4/NF-κB signaling pathway activation, and reduces inflammatory cytokines TNF-α, and IL-1ß. In addition, the I/R-induced downregulation of microRNA-410-3p was inhibited by CAT pre-treatment in vivo and in vitro. HMGB1 was identified as a potential target of microRNA-410-3p using a dual-luciferase reporter assay. Knockdown of microRNA-410-3p abolished the inhibitory effect of CAT on HMGB1, p-NF-κB, and p-IκB-α protein expression. CONCLUSIONS: Our study showed that CAT pre-treatment has a protective effect against hepatic I/R injury in rats. Specifically, CAT attenuates the aseptic inflammatory response to hepatic I/R injury in vivo and in vitro by inhibiting the HMGB1/TLR-4/NF-κB signaling pathway via the microRNA-410-3p.


Subject(s)
HMGB1 Protein , Liver , Quaternary Ammonium Compounds , Reperfusion Injury , Animals , Rats , Apoptosis , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Liver/blood supply , Liver/drug effects , Liver/pathology , Luciferases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Necrosis , NF-kappa B/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Signal Transduction , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Quaternary Ammonium Compounds/pharmacology , Quaternary Ammonium Compounds/therapeutic use , Inflammation/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...