Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 23(1): 300, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35413812

ABSTRACT

BACKGROUND: The scales serve as an ideal model for studying the regulatory mechanism of bone homeostasis in fish. To explore the effect of salinity acclimation on bone metabolism of juvenile rainbow trout (Oncorhynchus mykiss), three sampling time points during salinity acclimation (7D, 14D and 21D) were selected to detect variations in histological characteristics. In the histological analysis, osteoblast marker enzymes alkaline phosphatase (ALP), osteoclast marker tartrate-resistant acid phosphatase (TRAcP) and calcium salt deposit areas (Von Kossa's) were detected. Changes in calcium (Ca), phosphorus (P) and the molar mass ratio of calcium to phosphorus (Ca/P) in the scales were also detected by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). In addition, the global MicroRNA (miRNA) expression profiles during salinity acclimation were examined using Illumina sequencing platform because of their important regulatory roles in teleost biological processes. RESULTS: Twelve independent miRNA libraries were constructed, a total of 664 known and 92 putative novel miRNAs were identified. A total of 290 differentially expressed (DE) miRNAs were found in clusters with significant trends in the cluster analysis, and five types of clustering patterns were obtained; 22,374 DE predicted target genes of the aforementioned 290 DE miRNAs were obtained, 5957 of which clustered in six types of clustering patterns with a significant trend. To better understand the functions of the DE miRNAs, GO and KEGG analysis was performed on the 5957 target genes, as a result, they were significantly enriched in bone metabolism related signaling pathways such as MAPK signaling pathway, Calcium signaling pathway, Wnt signaling pathway, Mineral absorption and NF-kappa B signaling pathway. Six DE miRNAs were randomly selected and their expression were verified by quantitative real-time PCR (qRT-PCR), the expression trends were consistent with the results of transcriptome sequencing. CONCLUSIONS: The DE miRNAs and DE target genes identified in this study might play an important role in regulation of bone metabolism during salinity acclimation, relative genes or pathways could serve as key candidates for further studies to elucidate molecular mechanism of teleost bone metabolism, and help performing salinity acclimation and developing marine culture of salmonid species.


Subject(s)
MicroRNAs , Oncorhynchus mykiss , Acclimatization/genetics , Animals , Calcium , MicroRNAs/genetics , Oncorhynchus mykiss/genetics , Phosphorus , Salinity
2.
J Hazard Mater ; 416: 125931, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34492861

ABSTRACT

Contamination characteristics, equilibrium partitioning and risk assessment of phthalate esters (PAEs) were investigated in seawater, sediment and biological samples collected from the Xiangshan Bay area during an annual investigation between January and November 2019. PAE concentrations detected in the mariculture environment in surface seawater, sediment, and biological samples were 172-3365 ng/L, 190-2430 µg/kg (dry weight [dw]), and 820-4926 µg/kg (dw), respectively. The dominant congeners in different media included di-n-butyl phthalate (DnBP), diisobutyl phthalate (DiBP), and di(2-ethylhexyl) phthalate (DEHP). The inner bay and the bay mouth were the gathering area of PAEs and heavily influenced by the mariculture activities, river inputs, and anthropogenic activities. The bioaccumulation of PAEs demonstrated benthic feeding fishes with relatively high trophic levels concentrated high levels of phthalates. The mobility of PAEs in sediment-seawater showed that the transfer tendency of low-molecular weight species was from the sediment to the water, which was in contrast with those of high-molecular weight PAEs. DEHP, DiBP and DnBP had various degrees of ecological risks in the aquatic environment, whereas only the DiBP posed potential risks in sediments. The current assessment of carcinogenic and noncarcinogenic risks posed by fish consumption were within acceptable limits for humans.


Subject(s)
Esters , Phthalic Acids , Aquaculture , China , Dibutyl Phthalate , Humans , Phthalic Acids/toxicity , Plastics/toxicity , Risk Assessment
3.
Mar Pollut Bull ; 168: 112393, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33932843

ABSTRACT

In this study, marine mussels (Mytilus coruscus) were exposed to three typical PAEs (dimethyl phthalate [DMP], dibutyl phthalate [DBP] and di(2-ethylhexyl) phthalate [DEHP]) at a range of doses for different times to investigate the ecotoxicological effects. The accumulation of the three PAE congeners in M. coruscus exhibited the following trend: DEHP > DBP > DMP. The antioxidant response of mussel gonadal tissue was enhanced with increasing concentrations of PAEs. For the DBP and DEHP treatment groups, glutathione (GSH) worked in concert with antioxidant enzymes to protect cells against reactive oxygen species (ROS), while GSH played a prominent antioxidant role in the DMP-treated group. The metabolomics results revealed that PAE exposure disrupted the metabolic balance of mussels. Overall, PAEs affect the amino acid metabolism, lipid metabolism, energy metabolism, osmoregulation and nerve activities of mussels. Our results provide further insight into the toxicological effects of PAEs on marine organisms.


Subject(s)
Mytilus , Phthalic Acids , Animals , Bioaccumulation , Dibutyl Phthalate , Esters , Metabolomics
4.
Sci Total Environ ; 770: 144705, 2021 May 20.
Article in English | MEDLINE | ID: mdl-33736359

ABSTRACT

The pollution characteristics, spatiotemporal variation, sediment-water partitioning, and potential ecological risk assessment of phthalate esters (PAEs) in the sediment-seawater system of the Hangzhou Bay (HZB) in summer and autumn were researched. The sum of the concentrations of the 10 PAEs in seawater ranges from 7305 ng/L to 22,861 ng/L in summer and from 8100 ng/L to 33,329 ng/L in autumn, with mean values of 15,567 ± 4390 and 17,884 ± 6850 ng/L, respectively. The Σ16PAEs in the sediments are between 118 and 5888 µg/kg and 145 and 4746 µg/kg in summer and autumn, respectively. The level of PAEs in seawater varies with the seasons, but it is relatively stable in the sediments. Di(2-ethylhexyl) phthalate (DEHP), di-n-butyl phthalate (DnBP), and diisobutyl phthalate (DiBP) are the predominant PAE congeners in the HZB. The DnBP and DiBP concentrations in seawater are greater than the DEHP concentration, which is the opposite in the sediments. The sediment-seawater equilibrium distribution study indicates that the PAEs with medium molecular weights, such as DiBP, butyl benzyl phthalate, and DnBP, are near dynamic equilibrium in the sediment-seawater system; PAEs with high molecular weights (e.g., di-n-octyl phthalate and DEHP) tend to transfer from water to the sediments; and PAEs with low molecular weights (e.g., dimethyl phthalate, diethyl phthalate, and diamyl phthalate) tend to spread to seawater. The risk assessment results in seawater indicate that DEHP and DiBP might pose high potential risks to sensitive organisms, and DnBP might exhibit medium ecological risks. In the sediment, DiBP might display a high potential risk to fish, and the potential risk of DEHP is high in several sites.

SELECTION OF CITATIONS
SEARCH DETAIL
...