Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(16): 25859-25867, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614905

ABSTRACT

Quantum key distribution (QKD) provides information theoretically secure key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys to kick-start the process. In previous studies, the lattice-based post-quantum digital signature algorithm Aigis-Sig, combined with public-key infrastructure (PKI), was used to achieve high-efficiency quantum security authentication of QKD, and we have demonstrated its advantages in simplifying the MAN network structure and new user entry. This experiment further integrates the PQC algorithm into the commercial QKD system, the Jinan field metropolitan QKD network comprised of 14 user nodes and 5 optical switching nodes, and verifies the feasibility, effectiveness and stability of the post-quantum cryptography (PQC) algorithm and advantages of replacing trusted relays with optical switching brought by PQC authentication large-scale metropolitan area QKD network. QKD with PQC authentication has potential in quantum-secure communications, specifically in metropolitan QKD networks.

2.
Appl Opt ; 55(27): 7497-502, 2016 Sep 20.
Article in English | MEDLINE | ID: mdl-27661574

ABSTRACT

InGaAs/InP single-photon avalanche diodes (SPADs) are widely used in practical applications requiring near-infrared photon counting such as quantum key distribution (QKD). Photon detection efficiency and dark count rate are the intrinsic parameters of InGaAs/InP SPADs, due to the fact that their performances cannot be improved using different quenching electronics given the same operation conditions. After modeling these parameters and developing a simulation platform for InGaAs/InP SPADs, we investigate the semiconductor structure design and optimization. The parameters of photon detection efficiency and dark count rate highly depend on the variables of absorption layer thickness, multiplication layer thickness, excess bias voltage, and temperature. By evaluating the decoy-state QKD performance, the variables for SPAD design and operation can be globally optimized. Such optimization from the perspective of specific applications can provide an effective approach to design high-performance InGaAs/InP SPADs.

3.
Phys Rev Lett ; 111(13): 130502, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24116758

ABSTRACT

Quantum key distribution is proven to offer unconditional security in communication between two remote users with ideal source and detection. Unfortunately, ideal devices never exist in practice and device imperfections have become the targets of various attacks. By developing up-conversion single-photon detectors with high efficiency and low noise, we faithfully demonstrate the measurement-device-independent quantum-key-distribution protocol, which is immune to all hacking strategies on detection. Meanwhile, we employ the decoy-state method to defend attacks on a nonideal source. By assuming a trusted source scenario, our practical system, which generates more than a 25 kbit secure key over a 50 km fiber link, serves as a stepping stone in the quest for unconditionally secure communications with realistic devices.

4.
Opt Express ; 18(26): 27217-25, 2010 Dec 20.
Article in English | MEDLINE | ID: mdl-21196999

ABSTRACT

We have demonstrated a metropolitan all-pass quantum communication network in field fiber for four nodes. Any two nodes of them can be connected in the network to perform quantum key distribution (QKD). An optical switching module is presented that enables arbitrary 2-connectivity among output ports. Integrated QKD terminals are worked out, which can operate either as a transmitter, a receiver, or even both at the same time. Furthermore, an additional link in another city of 60 km fiber (up to 130 km) is seamless integrated into this network based on a trusted relay architecture. On all the links, we have implemented protocol of decoy state scheme. All of necessary electrical hardware, synchronization, feedback control, network software, execution of QKD protocols are made by tailored designing, which allow a completely automatical and stable running. Our system has been put into operation in Hefei in August 2009, and publicly demonstrated during an evaluation conference on quantum network organized by the Chinese Academy of Sciences on August 29, 2009. Real-time voice telephone with one-time pad encoding between any two of the five nodes (four all-pass nodes plus one additional node through relay) is successfully established in the network within 60 km.


Subject(s)
Computer Communication Networks/instrumentation , Fiber Optic Technology/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Telecommunications/instrumentation , Cities , Equipment Design , Equipment Failure Analysis , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...