Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 744
Filter
1.
Fish Shellfish Immunol ; 151: 109667, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38830520

ABSTRACT

For effective restoration, conservation of Ussruri whitefish Coregonus ussuriensis Berg and coping with global climate change, effects of environmental temperature on Ussruri whitefish urgently need to be explored. In current study, the effects of different acclimation temperatures on the growth, digestive physiology, antioxidant ability, liver transcriptional responses and intestinal microflora patterns of Ussruri whitefish were investigated. Ussruri whitefish (15.20 g ± 1.23 g) were reared for 42 days under different acclimation temperatures, i.e., 10, 13, 16, 19, 22 and 25 °C, respectively. Result first determined 28 °C as the semi-lethal temperature in order to design the temperature gradient test. Highest main gain rate (MGR) and specific growth rate (SGR) were observed in fish group having acclimation temperature of 19 °C. Significantly decrease (P < 0.05) in triglyceride (TG) content appeared at 19 °C as compared to the 10 °C and 13 °C temperature groups. 19 °C notablely increased protease activities of stomach and intestine and intestinal lipase and amylase activities. 19 °C group obtained the highest activities of chloramphnicol acetyltransferase (CAT) and total antioxidant capacity (T-AOC) and higher activities of superoxide dismutase (SOD). The intestinal microflora composition was most conducive to maintaining overall intestinal health when the temperature was 19 °C, compared to 10 °C and 25 °C. Ussruri whitefish exposed to 10 °C and 25 °C possessed the lower Lactobacillus abundance compared to exposure to 19 °C. Temperature down to 10 °C or up to 25 °C, respectively, triggered cold stress and heat stress, which leading to impairment in intestinal digestion, liver antioxidant capacity and intestinal microflora structure. Liver transcriptome response to 10 °C, 19 °C and 25 °C revealed that Ussruri whitefish might require the initiation of endoplasmic reticulum stress to correct protein damage from cold-temperature and high-temperature stress, and it was speculated that DNAJB11 could be regarded as a biomarker of cold stress response.Based on the quadratic regression analysis of MGR and SGR against temperature, the optimal acclamation temperature were, respectively, 18.0 °C and 18.1 °C. Our findings provide valuable theoretical insights for an in-depth understanding of temperature acclimation mechanisms and laid the foundation for conservation and development of Ussruri whitefish germplasm resources.

2.
J Cosmet Dermatol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831627

ABSTRACT

OBJECTIVE: To investigate the efficacy and safety of a repairing mask as an adjunctive treatment for skin barrier maintenance of mild to moderate rosacea. METHODS: Patients with rosacea were recruited in this dual center randomized controlled trial from November 2019 to December 2021. A total of 64 patients were included and randomized into two groups at a ratio of 3:1 into a mask group (n = 47) and a control group (n = 17). Patients in the mask group received treatment with Dr. Yu Centella asiatica repairing facial mask three times weekly for a duration of 6 weeks. All participants were instructed to continue their regimen of 50 mg oral minocycline twice daily and to apply Dr. Yu Intensive Hydrating Soft Cream twice daily. The primary endpoint of this study was the Investigator Global Assessment (IGA) score. RESULTS: A total of 54 patients completed this trial, with 41 in the mask group and 13 in the control group. After using this facial mask for 3 and 6 weeks, the IGA, facial skin dryness, facial flushing, and severity of skin lesion in the mask group showed significantly improvement (p < 0.05). Moreover, the change in the delta degree of skin flushing was significantly higher than that in the control group (p = 0.037). Throughout the study, no adverse events were reported in either group of participants. CONCLUSION: The Dr. Yu Centella asiatica repairing facial mask, as an adjunctive treatment of rosacea, appears to effectively repair and protect the skin barrier, alleviate cutaneous symptoms of rosacea, and is both efficacious and safe for patient use.

3.
Nat Cancer ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844817

ABSTRACT

Many individuals with cancer are resistant to immunotherapies. Here, we identify the gene encoding the pyrimidine salvage pathway enzyme cytidine deaminase (CDA) among the top upregulated metabolic genes in several immunotherapy-resistant tumors. We show that CDA in cancer cells contributes to the uridine diphosphate (UDP) pool. Extracellular UDP hijacks immunosuppressive tumor-associated macrophages (TAMs) through its receptor P2Y6. Pharmacologic or genetic inhibition of CDA in cancer cells (or P2Y6 in TAMs) disrupts TAM-mediated immunosuppression, promoting cytotoxic T cell entry and susceptibility to anti-programmed cell death protein 1 (anti-PD-1) treatment in resistant pancreatic ductal adenocarcinoma (PDAC) and melanoma models. Conversely, CDA overexpression in CDA-depleted PDACs or anti-PD-1-responsive colorectal tumors or systemic UDP administration (re)establishes resistance. In individuals with PDAC, high CDA levels in cancer cells correlate with increased TAMs, lower cytotoxic T cells and possibly anti-PD-1 resistance. In a pan-cancer single-cell atlas, CDAhigh cancer cells match with T cell cytotoxicity dysfunction and P2RY6high TAMs. Overall, we suggest CDA and P2Y6 as potential targets for cancer immunotherapy.

4.
Pancreatology ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38693040

ABSTRACT

OBJECTIVES: Screening for pancreatic ductal adenocarcinoma (PDAC) is considered in high-risk individuals (HRIs) with established PDAC risk factors, such as family history and germline mutations in PDAC susceptibility genes. Accurate assessment of risk factor status is provider knowledge-dependent and requires extensive manual chart review by experts. Natural Language Processing (NLP) has shown promise in automated data extraction from the electronic health record (EHR). We aimed to use NLP for automated extraction of PDAC risk factors from unstructured clinical notes in the EHR. METHODS: We first developed rule-based NLP algorithms to extract PDAC risk factors at the document-level, using an annotated corpus of 2091 clinical notes. Next, we further improved the NLP algorithms using a cohort of 1138 patients through patient-level training, validation, and testing, with comparison against a pre-specified reference standard. To minimize false-negative results we prioritized algorithm recall. RESULTS: In the test set (n = 807), the NLP algorithms achieved a recall of 0.933, precision of 0.790, and F1-score of 0.856 for family history of PDAC. For germline genetic mutations, the algorithm had a high recall of 0.851, while precision and F1-score were lower at 0.350 and 0.496 respectively. Most false positives for germline mutations resulted from erroneous recognition of tissue mutations. CONCLUSIONS: Rule-based NLP algorithms applied to unstructured clinical notes are highly sensitive for automated identification of PDAC risk factors. Further validation in a large primary-care patient population is warranted to assess real-world utility in identifying HRIs for pancreatic cancer screening.

5.
Heliyon ; 10(9): e30378, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38707441

ABSTRACT

Objective: To explore the effects of propofol and ciprofol on patient euphoric reactions during sedation in patients undergoing gastroscopy and to investigate potential factors that may influence euphoric reactions in patients. Methods: A total of 217 patients were randomly divided into two groups: the propofol group (P group, n = 109) and the ciprofol group (C group, n = 108). The patients in the P group were given 2 mg/kg propofol, and those in the C group were given 0.5 mg/kg ciprofol. The patients were assessed using the Addiction Research Center Inventory-Chinese Version (ARCI-CV) to measure euphoric reactions at three time points: preexamination, 30 min after awakening, and 1 week after examination. Anxiety, depression, and sleep status were evaluated using appropriate scales at admission and 1 week after the examination. The dream rate, sedative effects, vital sign dynamics, and adverse reactions were documented during the sedation process. Results: After 30 min of awakening, the P group and C group showed no statistically significant differences in the mean morphine-benzedrine group (MBG) score (8.84 vs. 9.09, P > 0.05), dream rate (42.2 % vs. 40.7 %, P > 0.05), or MBG score one week after the examination (7.04 vs. 7.05, P > 0.05). The regression analysis revealed that sex, dream status, Alcohol Use Disorders Identification Test (AUDIT) score, and examination time had notable impacts on the MBG-30 min score. No statistically significant differences were observed in sedative effects, anxiety, depression, or sleep status between the two groups (P > 0.05). The incidence of injection pain and severe hypotension was significantly lower in the C group (P < 0.05), and hemodynamics and SpO2 were more stable during sedation (P < 0.05). Conclusion: There was no significant difference between propofol and ciprofol in terms of euphoria experienced by patients after sedation in patients undergoing gastroscopy. Ciprofol has demonstrated addictive potential similar to that of propofol, warranting careful attention to its addictive potential during clinical application.

6.
Plant Dis ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736149

ABSTRACT

Rice black-streaked dwarf virus is transmitted by small brown planthoppers, which causes maize rough dwarf disease and rice black-streaked dwarf disease. This virus leads to slow growth or death of the host plants. During the co-evolutionary arms race between viruses and plants, virus-derived small interfering RNAs challenge the plant's defense response and inhibit host immunity through the RNA silencing system. However, it is currently unknown if rice black-streaked dwarf virus can produce the same small interfering RNAs to mediate the RNA silencing in different infected species. In this study, four small RNA libraries and four degradome libraries were constructed by extracting total RNAs from the leaves of the maize (Zea mays) inbred line B73 and japonica rice (Oryza sativa) variety Nipponbare exposed to feeding by viruliferous and non-viruliferous small brown planthoppers. We analyzed the characteristics of small RNAs and explored virus-derived small interfering RNAs in small RNA libraries through high-throughput sequencing. On analyzing the characteristics of small RNA, we noted that the size distributions of small RNAs were mainly 24-nt (19.74%-62.00%), whereas those of virus-derived small interfering RNAs were mostly 21-nt (41.06%-41.87%) and 22-nt (39.72%-42.26%). The 5'-terminal nucleotides of virus-derived small interfering RNAs tended to be adenine or uracil. Exploring the distribution of virus-derived small interfering RNAs hot spots on the viral genome segments revealed that the frequency of hot spots in B73 was higher than those in Nipponbare. Meanwhile, hotspots in the S9 and S10 virus genome segments were distributed similarly in both hosts. In addition, the target genes of small RNA were explored by degradome sequencing. Analyses of the regulatory pathway of these target genes unveiled that viral infection affected the ribosome-related target genes in maize and target genes in metabolism and biosynthesis pathways in rice. Here, 562 and 703 virus-derived small interfering RNAs were separately obtained in maize and rice, and 73 virus-derived small interfering RNAs named as co-vsiRNAs were detected in both hosts. Stem-loop PCR and RT-qPCR confirmed that co-vsiRNA 3.1 and co-vsiRNA 3.5 derived from genome segment S3 simultaneously play a role in maize and rice and inhibited host gene expression. The study revealed that rice black-streaked dwarf virus can produce the same small interfering RNAs in different species and provides a new direction for developing the new antiviral strategies.

7.
Article in English | MEDLINE | ID: mdl-38742455

ABSTRACT

BACKGROUND: Error analysis plays a crucial role in clinical concept extraction, a fundamental subtask within clinical natural language processing (NLP). The process typically involves a manual review of error types, such as contextual and linguistic factors contributing to their occurrence, and the identification of underlying causes to refine the NLP model and improve its performance. Conducting error analysis can be complex, requiring a combination of NLP expertise and domain-specific knowledge. Due to the high heterogeneity of electronic health record (EHR) settings across different institutions, challenges may arise when attempting to standardize and reproduce the error analysis process. OBJECTIVES: This study aims to facilitate a collaborative effort to establish common definitions and taxonomies for capturing diverse error types, fostering community consensus on error analysis for clinical concept extraction tasks. MATERIALS AND METHODS: We iteratively developed and evaluated an error taxonomy based on existing literature, standards, real-world data, multisite case evaluations, and community feedback. The finalized taxonomy was released in both .dtd and .owl formats at the Open Health Natural Language Processing Consortium. The taxonomy is compatible with several different open-source annotation tools, including MAE, Brat, and MedTator. RESULTS: The resulting error taxonomy comprises 43 distinct error classes, organized into 6 error dimensions and 4 properties, including model type (symbolic and statistical machine learning), evaluation subject (model and human), evaluation level (patient, document, sentence, and concept), and annotation examples. Internal and external evaluations revealed strong variations in error types across methodological approaches, tasks, and EHR settings. Key points emerged from community feedback, including the need to enhancing clarity, generalizability, and usability of the taxonomy, along with dissemination strategies. CONCLUSION: The proposed taxonomy can facilitate the acceleration and standardization of the error analysis process in multi-site settings, thus improving the provenance, interpretability, and portability of NLP models. Future researchers could explore the potential direction of developing automated or semi-automated methods to assist in the classification and standardization of error analysis.

8.
Vet Microbiol ; 292: 110067, 2024 May.
Article in English | MEDLINE | ID: mdl-38564905

ABSTRACT

African swine fever (ASF) is an infectious disease with high mortality caused by African swine fever virus (ASFV), which poses a great threat to the global swine industry. ASFV has evolved multiple strategies to evade host antiviral innate immunity by perturbing inflammatory responses and interferon production. However, the molecular mechanisms underlying manipulation of inflammatory responses by ASFV proteins are not fully understood. Here, we report that A137R protein of ASFV is a key suppressor of host inflammatory responses. Ectopic expression of ASFV A137R in HEK293T cells significantly inhibited the activation of IL-8 and NF-κB promoters triggered by Sendai virus (SeV), influenza A virus (IAV), or vesicular stomatitis virus (VSV). Accordingly, forced A137R expression caused a significant decrease in the production of several inflammatory cytokines such as IL-8, IL-6 and TNF-α in the cells infected with SeV or IAV. Similar results were obtained from experiments using A137R overexpressing PK15 and 3D4/21 cells infected with SeV or VSV. Furthermore, we observed that A137R impaired the activation of MAPK and NF-κB signaling pathways, as enhanced expression of A137R significantly decreased the phosphorylation of JNK, p38 and p65 respectively upon viral infection (SeV or IAV) and IL-1ß treatment. Mechanistically, we found that A137R interacted with MyD88, and dampened MyD88-mediated activation of MAPK and NF-κB signaling. Together, these findings uncover a critical role of A137R in restraining host inflammatory responses, and improve our understanding of complicated mechanisms whereby ASFV evades innate immunity.


Subject(s)
African Swine Fever Virus , African Swine Fever , Swine Diseases , Animals , Swine , Humans , NF-kappa B/metabolism , African Swine Fever Virus/genetics , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Interleukin-8/metabolism , HEK293 Cells
9.
Nat Commun ; 15(1): 2984, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582903

ABSTRACT

Metamaterials composed of different geometrical primitives have different properties. Corresponding to the fundamental geometrical forms of line, plane, and surface, beam-, plate-, and shell-based lattice metamaterials enjoy many advantages in many aspects, respectively. To fully exploit the advantages of each structural archetype, we propose a multilayer strategy and topology optimization technique to design lattice metamaterial in this study. Under the frame of the multilayer strategy, the design space is enlarged and diversified, and the design freedom is increased. Topology optimization is applied to explore better designs in the larger and diverse design space. Beam-plate-shell-combined metamaterials automatically emerge from the optimization to achieve ultrahigh stiffness. Benefiting from high stiffness, energy absorption performances of optimized results also demonstrate substantial improvements under large geometrical deformation. The multilayer strategy and topology optimization can also bring a series of tunable dimensions for lattice design, which helps achieve desired mechanical properties, such as isotropic elasticity and functionally grading material property, and superior performances in acoustic tuning, electrostatic shielding, and fluid field tuning. We envision that a broad array of synthetic and composite metamaterials with unprecedented performance can be designed with the multilayer strategy and topology optimization.

10.
Ital J Pediatr ; 50(1): 84, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38650007

ABSTRACT

BACKGROUND: The COVID-19 pandemic have impacts on the prevalence of other pathogens and people's social lifestyle. This study aimed to compare the pathogen, allergen and micronutrient characteristics of pediatric inpatients with pneumonia prior to and during the COVID-19 pandemic in a large tertiary hospital in Shanghai, China. METHODS: Patients with pneumonia admitted to the Department of Pediatric Pulmonology of Xinhua Hospital between March-August 2019 and March-August 2020 were recruited. And clinical characteristics of the patients in 2019 were compared with those in 2020. RESULTS: Hospitalizations for pneumonia decreased by 74% after the COVID-19 pandemic. For pathogens, virus, mycoplasma pneumoniae (MP) and mixed infection rates were all much lower in 2020 than those in 2019 (P < 0.01). Regarding allergens, compared with 2019, the positive rates of house dust mite, shrimp and crab were significantly higher in 2020 (P < 0.01). And for micronutrients, the levels of vitamin B2, B6, C and 25-hydroxyvitamin D (25(OH)D) in 2020 were observed to be significantly lower than those in 2019 (P < 0.05). For all the study participants, longer hospital stay (OR = 1.521, P = 0.000), milk allergy (OR = 6.552, P = 0.033) and calcium (Ca) insufficiency (OR = 12.048, P = 0.019) were identified as high-risk factors for severe pneumonia by multivariate analysis. CONCLUSIONS: The number of children hospitalized with pneumonia and incidence of common pathogen infections were both reduced, and that allergy and micronutrient status in children were also changed after the outbreak of the COVID-19 pandemic.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Male , Female , Retrospective Studies , Child , China/epidemiology , Child, Preschool , Hospitalization/statistics & numerical data , Infant , SARS-CoV-2 , Pneumonia/epidemiology , Adolescent
11.
Article in English | MEDLINE | ID: mdl-38644529

ABSTRACT

OBJECTIVE: The aim of this study was to develop a web-based dynamic prediction model for postoperative nausea and vomiting (PONV) in patients undergoing gynecologic laparoscopic surgery. METHODS: The patients (N = 647) undergoing gynecologic laparoscopic surgery were included in this observational study. The candidate risk-factors related to PONV were included through literature search. Lasso regression was utilized to screen candidate risk-factors, and the variables with statistical significance were selected in multivariable logistic model building. The web-based dynamic Nomogram was used for model exhibition. Accuracy and validity of the experimental model (EM) were evaluated by generating receiver operating characteristic (ROC) curves and calibration curves. Hosmer-Lemeshow test was used to evaluate the goodness of fit of the model. Decision curve analysis (DCA) was used to evaluate the clinical practicability of the risk prediction model. RESULTS: Ultimately, a total of five predictors including patient-controlled analgesia (odds ratio [OR], 4.78; 95% confidence interval [CI], 1.98-12.44), motion sickness (OR, 4.80; 95% CI, 2.71-8.65), variation of blood pressure (OR, 4.30; 95% CI, 2.41-7.91), pregnancy vomiting history (OR, 2.21; 95% CI, 1.44-3.43), and pain response (OR, 1.64; 95% CI, 1.48-1.83) were selected in model building. Assessment of the model indicates the discriminating power of EM was adequate (ROC-areas under the curve, 93.0%; 95% CI, 90.7%-95.3%). EM showed better accuracy and goodness of fit based on the results of the calibration curve. The DCA curve of EM showed favorable clinical benefits. CONCLUSIONS: This dynamic prediction model can determine the PONV risk in patients undergoing gynecologic laparoscopic surgery.

12.
Int Immunopharmacol ; 133: 112059, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38615385

ABSTRACT

Many immune-mediated diseases have the common genetic basis, as an autoimmune disorder, celiac disease (CeD) primarily affects the small intestine, and is caused by the ingestion of gluten in genetically susceptible individuals. As for ulcerative colitis (UC), which most likely involves a complex interplay between some components of the commensal microbiota and other environmental factors in its origin. These two autoimmune diseases share a specific target organ, the bowel. The etiology and immunopathogenesis of both conditions characterized by chronic intestinal inflammation, ulcerative colitis and celiac disease, are not completely understood. Both are complex diseases with genetics and the environmental factors contributing to dysregulation of innate and adaptive immune responses, leading to chronic inflammation and disease. This study is designed to further clarify the relationship between UC and CeD. The GEO database was used to download gene expression profiles for CeD (GSE112102) and UC (GSE75214). The GSEA KEGG pathway analysis revealed that immune-related pathways were significantly associated with both diseases. Further, we screened 187 shared differentially expressed genes (DEGs) of the two diseases. Gene Ontology (GO) and WikiPathways were carried out to perform the biological process and pathway enrichment analysis. Subsequently, based on the DEGs, the least absolute shrinkage and selection operator (LASSO) analysis was performed to screen for the diagnostic biomarkers of the diseases. Moreover, single-cell RNA-sequencing (RNA-seq) data from five colonic propria with UC showed that REG4 expression was present in Goblet cell, Enteroendocrine cell, and Epithelial. Finally, our work identified REG4 is the shared gene of UC and CeD via external data validation, cellular experiments, and immunohistochemistry. In conclusion, our study elucidated that abnormal immune response could be the common pathogenesis of UC and CeD, and REG4 might be a key potential biomarker and therapeutic target for the comorbidity of these two diseases.


Subject(s)
Celiac Disease , Colitis, Ulcerative , Single-Cell Analysis , Celiac Disease/genetics , Celiac Disease/immunology , Colitis, Ulcerative/genetics , Colitis, Ulcerative/immunology , Humans , Transcriptome , Gene Expression Profiling , Sequence Analysis, RNA
13.
Drug Des Devel Ther ; 18: 1189-1198, 2024.
Article in English | MEDLINE | ID: mdl-38645990

ABSTRACT

Purpose: Postoperative nausea and vomiting (PONV) frequently occur in patients after surgery. In this study, the authors investigated whether perioperative S-ketamine infusion could decrease the incidence of PONV in patients undergoing video-assisted thoracoscopic surgery (VATS) lobectomy. Patients and Methods: This prospective, randomized, double-blinded, controlled study was conducted a total of 420 patients from September 2021 to May 2023 at Xuzhou Central Hospital in China, who underwent elective VATS lobectomy under general anesthesia with tracheal intubation. The patients were randomly assigned to either the S-ketamine group or the control group. The S-ketamine group received a bolus injection of 0.5 mg/kg S-ketamine and an intraoperative continuous infusion of S-ketamine at a rate of 0.25 mg/kg/h. The control group received an equivalent volume of saline. All patients were equipped with patient-controlled intravenous analgesia (PCIA), with a continuous infusion rate of 0.03 mg/kg/h S-ketamine in the S-ketamine group or 0.03 µg/kg/h sufentanil in the control group. The primary outcome was the incidence of PONV. Secondary outcomes included perioperative opioid consumption, hemodynamics, postoperative pain, and adverse events. Results: The incidence of PONV in the S-ketamine group (9.7%) was significantly lower than in the control group (30.5%). Analysis of perioperative opioid usage revealed that remifentanil usage was 40.0% lower in the S-ketamine group compared to the control group (1414.8 µg vs 2358.2 µg), while sufentanil consumption was 75.2% lower (33.1 µg vs 133.6 µg). The S-ketamine group demonstrated better maintenance of hemodynamic stability. Additionally, the visual analogue scale (VAS) scores on postoperative day 1 (POD-1) and postoperative day 3 (POD-3) were significantly lower in the S-ketamine group. Finally, no statistically significant difference in other postoperative adverse reactions was observed between the two groups. Conclusion: The results of this trial indicate that perioperative S-ketamine infusion can effectively reduce the incidence of PONV in patients undergoing VATS lobectomy.


Subject(s)
Ketamine , Postoperative Nausea and Vomiting , Thoracic Surgery, Video-Assisted , Adult , Aged , Female , Humans , Male , Middle Aged , Double-Blind Method , Ketamine/administration & dosage , Postoperative Nausea and Vomiting/prevention & control , Prospective Studies , Thoracic Surgery, Video-Assisted/adverse effects
14.
Cancer Cell ; 42(5): 869-884.e9, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38579725

ABSTRACT

The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) involves a significant accumulation of cancer-associated fibroblasts (CAFs) as part of the host response to tumor cells. The origins and functions of transcriptionally diverse CAF populations in PDAC remain poorly understood. Tumor cell-intrinsic genetic mutations and epigenetic dysregulation may reshape the TME; however, their impacts on CAF heterogeneity remain elusive. SETD2, a histone H3K36 trimethyl-transferase, functions as a tumor suppressor. Through single-cell RNA sequencing, we identify a lipid-laden CAF subpopulation marked by ABCA8a in Setd2-deficient pancreatic tumors. Our findings reveal that tumor-intrinsic SETD2 loss unleashes BMP2 signaling via ectopic gain of H3K27Ac, leading to CAFs differentiation toward lipid-rich phenotype. Lipid-laden CAFs then enhance tumor progression by providing lipids for mitochondrial oxidative phosphorylation via ABCA8a transporter. Together, our study links CAF heterogeneity to epigenetic dysregulation in tumor cells, highlighting a previously unappreciated metabolic interaction between CAFs and pancreatic tumor cells.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Pancreatic Ductal , Epigenesis, Genetic , Pancreatic Neoplasms , Tumor Microenvironment , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/metabolism , Mice , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Gene Expression Regulation, Neoplastic , Cell Line, Tumor , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism
15.
Biomolecules ; 14(4)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672481

ABSTRACT

Soybean [Glycine max (L.) Merr.] is a short-day (SD) plant that is sensitive to photoperiod, which influences flowering, maturity, and even adaptation. TEOSINTE-BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors have been shown to regulate photoperiodic flowering. However, the roles of TCPs in SD plants such as soybean, rice, and maize remain largely unknown. In this study, we cloned the GmTCP40 gene from soybean and investigated its expression pattern and function. Compared with wild-type (WT) plants, GmTCP40-overexpression plants flowered earlier under long-day (LD) conditions but not under SD conditions. Consistent with this, the overexpression lines showed upregulation of the flowering-related genes GmFT2a, GmFT2b, GmFT5a, GmFT6, GmAP1a, GmAP1b, GmAP1c, GmSOC1a, GmSOC1b, GmFULa, and GmAG under LD conditions. Further investigation revealed that GmTCP40 binds to the GmAP1a promoter and promotes its expression. Analysis of the GmTCP40 haplotypes and phenotypes of soybean accessions demonstrated that one GmTCP40 haplotype (Hap6) may contribute to delayed flowering at low latitudes. Taken together, our findings provide preliminary insights into the regulation of flowering time by GmTCP40 while laying a foundation for future research on other members of the GmTCP family and for efforts to enhance soybean adaptability.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Glycine max , Photoperiod , Plant Proteins , Flowers/genetics , Flowers/growth & development , Glycine max/genetics , Glycine max/growth & development , Glycine max/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Promoter Regions, Genetic/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Up-Regulation/genetics
16.
Article in English | MEDLINE | ID: mdl-38642730

ABSTRACT

Continuous antipsychotic treatment is often recommended to prevent relapse in schizophrenia. However, the efficacy of antipsychotic treatment appears to diminish in patients with relapsed schizophrenia and the underlying mechanisms are still unknown. Moreover, though the findings are inconclusive, several recent studies suggest that intermittent versus continuous treatment may not significantly differ in recurrence risk and therapeutic efficacy but potentially reduce the drug dose and side effects. Notably, disturbances in fatty acid (FA) metabolism are linked to the onset/relapse of schizophrenia, and patients with multi-episode schizophrenia have been reported to have reduced FA biosynthesis. We thus utilized an MK-801-induced animal model of schizophrenia to evaluate whether two treatment strategies of clozapine would affect drug response and FA metabolism differently in the brain. Schizophrenia-related behaviors were assessed through open field test (OFT) and prepulse inhibition (PPI) test, and FA profiles of prefrontal cortex (PFC) and hippocampus were analyzed by gas chromatography-mass spectrometry. Additionally, we measured gene expression levels of enzymes involved in FA synthesis. Both intermittent and continuous clozapine treatment reversed hypermotion and deficits in PPI in mice. Continuous treatment decreased total polyunsaturated fatty acids (PUFAs), saturated fatty acids (SFAs) and FAs in the PFC, whereas the intermittent administration increased n-6 PUFAs, SFAs and FAs compared to continuous administration. Meanwhile, continuous treatment reduced the expression of Fads1 and Elovl2, while intermittent treatment significantly upregulated them. This study discloses the novel findings that there was no significant difference in clozapine efficacy between continuous and intermittent administration, but intermittent treatment showed certain protective effects on phospholipid metabolism in the PFC.


Subject(s)
Antipsychotic Agents , Clozapine , Disease Models, Animal , Dizocilpine Maleate , Fatty Acids , Schizophrenia , Animals , Clozapine/pharmacology , Clozapine/administration & dosage , Schizophrenia/drug therapy , Schizophrenia/metabolism , Dizocilpine Maleate/pharmacology , Antipsychotic Agents/pharmacology , Antipsychotic Agents/administration & dosage , Fatty Acids/metabolism , Male , Mice , Brain/metabolism , Brain/drug effects , Prepulse Inhibition/drug effects , Mice, Inbred C57BL , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Open Field Test/drug effects
17.
Sci Total Environ ; 927: 172258, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38583618

ABSTRACT

Population outbreaks of the crown-of-thorns starfish (COTS) seriously threaten the sustainability of coral reef ecosystems. However, traditional ecological monitoring techniques cannot provide early warning before the outbreaks, thus preventing timely intervention. Therefore, there is an urgent need for a more accurate and faster technology to predict the outbreaks of COTS. In this work, we developed an electrochemical biosensor based on a programmed catalytic hairpin assembly (CHA) and hybridization chain reaction (HCR) cyclic amplification strategy for sensitive and selective detection of COTS environmental DNA (eDNA) in water bodies. This biosensor exhibited excellent electrochemical characteristics, including a low limit of detection (LOD = 18.4 fM), low limit of quantification (LOQ = 41.1 fM), and wide linear range (50 fM - 10 nM). The biosensing technology successfully allowed the detection of COTS eDNA in the aquarium environment, and the results also demonstrated a significant correlation between eDNA concentration and COTS number (r = 0.990; P < 0.001). The reliability and accuracy of the biosensor results have been further validated through comparison with digital droplet PCR (ddPCR). Moreover, the applicability and accuracy of the biosensor were reconfirmed in field tests at the COTS outbreak site in the South China Sea, which has shown potential application in dynamically monitoring the larvae before the COTS outbreak. Therefore, this efficient electrochemical biosensing technology offers a new solution for on-site monitoring and early warning of the COTS outbreak.


Subject(s)
Biosensing Techniques , DNA, Environmental , Environmental Monitoring , Starfish , Biosensing Techniques/methods , Animals , Environmental Monitoring/methods , Coral Reefs , China
18.
EMBO Mol Med ; 16(5): 1115-1142, 2024 May.
Article in English | MEDLINE | ID: mdl-38570712

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with an overall 5-year survival rate of <12% due to the lack of effective treatments. Novel treatment strategies are urgently needed. Here, PKMYT1 is identified through genome-wide CRISPR screens as a non-mutant, genetic vulnerability of PDAC. Higher PKMYT1 expression levels indicate poor prognosis in PDAC patients. PKMYT1 ablation inhibits tumor growth and proliferation in vitro and in vivo by regulating cell cycle progression and inducing apoptosis. Moreover, pharmacological inhibition of PKMYT1 shows efficacy in multiple PDAC cell models and effectively induces tumor regression without overt toxicity in PDAC cell line-derived xenograft and in more clinically relevant patient-derived xenograft models. Mechanistically, in addition to its canonical function of phosphorylating CDK1, PKMYT1 functions as an oncogene to promote PDAC tumorigenesis by regulating PLK1 expression and phosphorylation. Finally, TP53 function and PRKDC activation are shown to modulate the sensitivity to PKMYT1 inhibition. These results define PKMYT1 dependency in PDAC and identify potential therapeutic strategies for clinical translation.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Protein Serine-Threonine Kinases , Humans , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Cell Line, Tumor , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Mice , Cell Proliferation/drug effects , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/antagonists & inhibitors , Apoptosis/genetics , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/antagonists & inhibitors , Membrane Proteins , Protein-Tyrosine Kinases
19.
Curr Probl Cardiol ; 49(5): 102526, 2024 May.
Article in English | MEDLINE | ID: mdl-38492616

ABSTRACT

Breast cancer is one of the most common types of cancer, representing 15 % of all new cancer cases in the United States. Approximately 12.4 % of all women will be diagnosed with breast cancer during their lifetime. In the past decades, a decrease in cancer-related mortality is evident as a result of early screening and improved therapeutic options. Nonetheless, breast cancer survivors face long-term treatment side effects, with cardiotoxicity being the most significant one, which lead to increased morbidity and mortality. Breast cancer patients are particularly susceptible to cancer therapeutics-related cardiac dysfunction (CTRCD) as treatment regimens include cardiotoxic drugs, primarily anthracyclines and anti-human epidermal growth factor receptor 2 (anti-HER2) agents (recombinant humanized monoclonal antibodies directed against HER2 such as trastuzumab and pertuzumab). Cardiotoxicity is the most common dose-limiting toxicity associated with trastuzumab. Discontinuation of trastuzumab however, can lead to worse cancer outcomes. There have been case reports, registry-based, retrospective cohort-based and mechanistic studies suggesting the cardioprotective potential of SGLT2i in CTRCD. It is not known whether SGLT2i can prevent the development of incident HF or reduce the risk of HF in patients receiving trastuzumab with or without other concurrent anti-HER2 agent or sequential anthracycline for treatment of HER2 positive breast cancer. Based on these, there is now a call for randomized controlled trials to be performed in this patient cohort to advise guideline-directed therapy for CTRCD, which will in turn also provide detailed safety information and improve cancer and cardiovascular outcomes.


Subject(s)
Breast Neoplasms , Heart Diseases , Female , Humans , Breast Neoplasms/drug therapy , Cardiotoxicity/etiology , Cardiotoxicity/prevention & control , Retrospective Studies , Trastuzumab/adverse effects , Heart Diseases/chemically induced , Heart Diseases/prevention & control , Anthracyclines/adverse effects , Glucose , Sodium/therapeutic use
20.
J Biomed Inform ; 152: 104623, 2024 04.
Article in English | MEDLINE | ID: mdl-38458578

ABSTRACT

INTRODUCTION: Patients' functional status assesses their independence in performing activities of daily living, including basic ADLs (bADL), and more complex instrumental activities (iADL). Existing studies have discovered that patients' functional status is a strong predictor of health outcomes, particularly in older adults. Depite their usefulness, much of the functional status information is stored in electronic health records (EHRs) in either semi-structured or free text formats. This indicates the pressing need to leverage computational approaches such as natural language processing (NLP) to accelerate the curation of functional status information. In this study, we introduced FedFSA, a hybrid and federated NLP framework designed to extract functional status information from EHRs across multiple healthcare institutions. METHODS: FedFSA consists of four major components: 1) individual sites (clients) with their private local data, 2) a rule-based information extraction (IE) framework for ADL extraction, 3) a BERT model for functional status impairment classification, and 4) a concept normalizer. The framework was implemented using the OHNLP Backbone for rule-based IE and open-source Flower and PyTorch library for federated BERT components. For gold standard data generation, we carried out corpus annotation to identify functional status-related expressions based on ICF definitions. Four healthcare institutions were included in the study. To assess FedFSA, we evaluated the performance of category- and institution-specific ADL extraction across different experimental designs. RESULTS: ADL extraction performance ranges from an F1-score of 0.907 to 0.986 for bADL and 0.825 to 0.951 for iADL across the four healthcare sites. The performance for ADL extraction with impairment ranges from an F1-score of 0.722 to 0.954 for bADL and 0.674 to 0.813 for iADL across four healthcare sites. For category-specific ADL extraction, laundry and transferring yielded relatively high performance, while dressing, medication, bathing, and continence achieved moderate-high performance. Conversely, food preparation and toileting showed low performance. CONCLUSION: NLP performance varied across ADL categories and healthcare sites. Federated learning using a FedFSA framework performed higher than non-federated learning for impaired ADL extraction at all healthcare sites. Our study demonstrated the potential of the federated learning framework in functional status extraction and impairment classification in EHRs, exemplifying the importance of a large-scale, multi-institutional collaborative development effort.


Subject(s)
Activities of Daily Living , Functional Status , Humans , Aged , Learning , Information Storage and Retrieval , Natural Language Processing
SELECTION OF CITATIONS
SEARCH DETAIL
...