Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Asian J Psychiatr ; 80: 103386, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36495730

ABSTRACT

Cognitive impairment in euthymic bipolar disorder (BD) contributes to poor functional outcomes. Resting-state magnetic resonance imaging (MRI)may help us understand the neurobiology of cognitive impairment in BD. Here, forty unmedicated euthymic BD patients and thirty-nine healthy controls were recruited, undergoing MRI scans and neuropsychological measures. The amplitude of low-frequency fluctuation (ALFF) and ALFF-based functional connectivity (FC) analysis was employed to explore the potential alterations of neural activity. Voxel-wised correlation was calculated between clinical and cognitive variables and abnormal brain activity. Compared with healthy controls, euthymic BD patients showed worse cognitive performance in Trail Making Test, Digit Span Test, and Stroop Color-Word Test (SCWT). The euthymic BD group had significantly lower ALFF in the left medial frontal gyrus, right middle frontal gyrus, right postcentral gyrus, and left superior frontal gyrus. Furthermore, we found decreased ALFF values in the right middle frontal gyrus that was negatively correlated with cognitive inhibition, (r = -0.43, P = 0.015). ALFF-based FC analysis showed that BD group showed significantly decreased FC between the right middle frontal gyrus (seed) and left middle temporal gyrus and left medial frontal gyrus, (Two-tailed, PFWE < 0.05, TFCE corrected). The findings demonstrated that individuals with BD during the euthymic phase exhibited decreased ALFF and hypoconnectivity of key brain areas within the frontoparietal network. These altered spontaneous brain activity in euthymic BD patients may be involved in the pathophysiology mechanism of cognitive deficits.


Subject(s)
Bipolar Disorder , Cognitive Dysfunction , Humans , Bipolar Disorder/complications , Bipolar Disorder/diagnostic imaging , Brain/diagnostic imaging , Prefrontal Cortex , Frontal Lobe , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Magnetic Resonance Imaging/methods
2.
ACS Omega ; 4(5): 8087-8093, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31459899

ABSTRACT

Using density functional theory calculations and photoemission measurements, we have studied the interaction between the non-fullerene small-molecule acceptor ITIC and K atoms (a representative of reactive metals). It is found that the acceptor-donor-acceptor-type geometric structure and the electronic structure of ITIC largely decide the interaction process. One ITIC molecule can combine with more than 20 K atoms. For stoichiometries K x≤6ITIC, the K atoms are attracted to the acceptor units of the molecule and donate their 4s electrons to the unoccupied molecular orbitals. K-ITIC organometallic complexes, characterized by the breaking of some S-C bonds in the donor unit of ITIC and the formation of K-S bonds, are formed for stoichiometries K x≥7ITIC. The complexes are still conjugated despite the breaking of some S-C bonds.

SELECTION OF CITATIONS
SEARCH DETAIL
...