Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Chromatogr A ; 1728: 464998, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-38795423

ABSTRACT

Covalent organic frameworks (COFs) show promise as a stationary phase in high performance liquid chromatography (HPLC). However, there are only a few COFs-based stationary phases developed for HPLC separation so far. Therefore, it is crucial to not only develop more varieties of COFs-type stationary phases for HPLC separation, but also to explore the retention mechanism of solutes on these stationary phases. In this paper, a new in-situ growth method was developed to prepare ß-ketoenamine COF-TpPa-1@SiO2 composite microspheres, using spherical silica as the core material and COF-TpPa-1 fabricated by covalent conjugation of 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-1) as the COF shells. The resulting microspheres exhibit uniform morphology, good monodispersity, large specific surface area, narrow size distribution, and high stability. Due to diverse functional groups in the structure of COF-TpPa-1, the microspheres can offer multiple interactions, such as hydrophobic, π-π stacking and electron-donor-acceptor (EDA) between COFs and analytes. As a result, the COF-TpPa-1@SiO2 composite microspheres can be used as a mixed-mode stationary phase for HPLC separation. The chromatographic performance and retention mechanism of the COF-TpPa-1@SiO2 packed column were investigated by separating polar and non-polar solutes, as well as isomers, in various HPLC modes, including reversed-phase liquid chromatography (RPLC), hydrophilic interaction chromatography (HILIC), and RPLC/HILIC mixed-mode chromatography. The results showed successful separation of non-polar alkylbenzene homologues, polycyclic aromatic hydrocarbons (PAHs), and polar amines and phenols in RPLC mode. The "U-shaped" curves of retention factor with the ACN concentration in mobile phase for four nucleobases indicated that the solute retention on the column followed a mixed mode mechanism of RPLC/HILIC. Compared to a traditional C18 column, the COF-TpPa-1@SiO2 column exhibited superior separation efficiency, stability, repeatability and reproducibility in the separation of analytes with different polarities. The column enhanced the aromatic, shape and planar selectivity for PAHs and isomers through π-π interaction and improved the separation efficiency for electron-deficient compounds due to EDA effect. At last, the column was successfully used to separate and detect the residues of 5 phenylurea herbicides (PUHs) in soil. All these results indicate the potential of COFs for chromatography applications.


Subject(s)
Chromatography, Reverse-Phase , Hydrophobic and Hydrophilic Interactions , Microspheres , Silicon Dioxide , Chromatography, High Pressure Liquid/methods , Silicon Dioxide/chemistry , Chromatography, Reverse-Phase/methods , Metal-Organic Frameworks/chemistry , Amines/chemistry , Amines/isolation & purification , Ketones
SELECTION OF CITATIONS
SEARCH DETAIL
...