Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 449
Filter
2.
Nano Lett ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848111

ABSTRACT

Mixed-dimensional heterostructures integrate materials of diverse dimensions with unique electronic functionalities, providing a new platform for research in electron transport and optoelectronic detection. Here, we report a novel covalently bonded one-dimensional/two-dimensional (1D/2D) homojunction structure with robust junction contacts, which exhibits wide-spectrum (from the visible to near-infrared regions), self-driven photodetection, and polarization-sensitive photodetection capabilities. Benefiting from the ultralow dark current at zero bias voltage, the on/off ratio and detectivity of the device reach 1.5 × 103 and 3.24 × 109 Jones, respectively. Furthermore, the pronounced anisotropy of the WSe2 1D/2D homojunction is attributed to its low symmetry, enabling polarization-sensitive detection. In the absence of any external bias voltage, the device exhibits strong linear dichroism for wavelengths of 638 and 808 nm, with anisotropy ratios of 2.06 and 1.96, respectively. These results indicate that such mixed-dimensional structures can serve as attractive building blocks for novel optoelectronic detectors.

3.
Hum Brain Mapp ; 45(7): e26689, 2024 May.
Article in English | MEDLINE | ID: mdl-38703095

ABSTRACT

Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (ß = .837, r = 0.472, p < .001) and glucose covariance (ß = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.


Subject(s)
Alzheimer Disease , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Nerve Net , Positron-Emission Tomography , tau Proteins , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Male , Female , Aged , tau Proteins/metabolism , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/metabolism , Nerve Net/physiopathology , Glucose/metabolism , Connectome , Prospective Studies , Brain/diagnostic imaging , Brain/metabolism , Brain/physiopathology , Aged, 80 and over
4.
J Cancer ; 15(10): 3227-3241, 2024.
Article in English | MEDLINE | ID: mdl-38706908

ABSTRACT

Background: Telomere maintenance takes part in the regulation of gastric cancer (GC) pathogenesis and is essential for patients' clinical features. Though the correlation between a single telomere maintenance-related gene and GC has previously been published, comprehensive exploration and systematic analysis remain to be studied. Our study is aimed at determining telomere maintenance-related molecular subtypes and examining their role in GC. Methods: By analyzing the transcriptome data, we identified three telomere maintenance-associated clusters (TMCs) with heterogeneity in clinical features and tumor microenvironment (TME). Then, we screened five prognostic telomere maintenance-related genes and established corresponding TM scores. Additionally, the expression level and biological function of tubulin beta 6 class V (TUBB6) were validated in GC tissues and cells. Results: TMC1 was correlated with EMT and TGF-beta pathway and predicted low tumor mutation burden (TMB) as well as bad prognostic outcomes. TMC3 was associated with cell cycle and DNA repair. In terms of TMB and overall survival, TMC3 exhibited opposite results against TMC1. Significant heterogeneity was observed between TMCs. TUBB6 was upregulated and could promote GC proliferation, migration, and invasion. Conclusion: Altogether, combining bioinformatics and functional experiments, we identified three molecular subtypes based on telomere maintenance-associated genes in GC, which could bring new ideas and novel biomarkers to the clinic.

5.
Plants (Basel) ; 13(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732436

ABSTRACT

MYBs constitute the second largest transcription factor (TF) superfamily in flowering plants with substantial structural and functional diversity, which have been brought into focus because they affect flower colors by regulating anthocyanin biosynthesis. Up to now, the genomic data of several Chrysanthemum species have been released, which provides us with abundant genomic resources for revealing the evolution of the MYB gene family in Chrysanthemum species. In the present study, comparative analyses of the MYB gene family in six representative species, including C. lavandulifolium, C. seticuspe, C. ×morifolium, Helianthus annuus, Lactuca sativa, and Arabidopsis thaliana, were performed. A total of 1104 MYBs, which were classified into four subfamilies and 35 lineages, were identified in the three Chrysanthemum species (C. lavandulifolium, C. seticuspe, and C. ×morifolium). We found that whole-genome duplication and tandem duplication are the main duplication mechanisms that drove the occurrence of duplicates in CmMYBs (particularly in the R2R3-MYB subfamily) during the evolution of the cultivated chrysanthemums. Sequence structure and selective pressure analyses of the MYB gene family revealed that some of R2R3-MYBs were subjected to positive selection, which are mostly located on the distal telomere segments of the chromosomes and contain motifs 7 and 8. In addition, the gene expression analysis of CmMYBs in different organs and at various capitulum developmental stages of C. ×morifolium indicated that CmMYBS2, CmMYB96, and CmMYB109 might be the negative regulators for anthocyanin biosynthesis. Our results provide the phylogenetic context for research on the genetic and functional evolution of the MYB gene family in Chrysanthemum species and deepen our understanding of the regulatory mechanism of MYB TFs on the flower color of C. ×morifolium.

6.
Nanomicro Lett ; 16(1): 200, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782792

ABSTRACT

Vehicles operating in space need to withstand extreme thermal and electromagnetic environments in light of the burgeoning of space science and technology. It is imperatively desired to high insulation materials with lightweight and extensive mechanical properties. Herein, a boron-silica-tantalum ternary hybrid phenolic aerogel (BSiTa-PA) with exceptional thermal stability, extensive mechanical strength, low thermal conductivity (49.6 mW m-1 K-1), and heightened ablative resistance is prepared by an expeditious method. After extremely thermal erosion, the obtained carbon aerogel demonstrates noteworthy electromagnetic interference (EMI) shielding performance with an efficiency of 31.6 dB, accompanied by notable loading property with specific modulus of 272.8 kN·m kg-1. This novel design concept has laid the foundation for the development of insulation materials in more complex extreme environments.

7.
J Diabetes ; 16(6): e13563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783768

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complicated disease related to metabolism that results from resistance to insulin and sustained hyperglycemia. Traditional antidiabetic drugs cannot meet the demand of different diabetes patients for reaching the glycemic targets; thus, the identification of new antidiabetic drugs is urgently needed for the treatment of T2DM to enhance glycemic control and the prognosis of patients suffering from T2DM. Recently, glucokinase (GK) has attracted much attention and is considered to be an effective antidiabetic agent. Glucokinase activators (GKA) represented by dorzagliatin could activate GK and mimic its function that triggers a counter-regulatory response to blood glucose changes. Dorzagliatin has shown great potential for glycemic control in diabetic patients in a randomized, double-blind, placebo-controlled Phase 3 trial (SEED study) and had a favorable safety profile and was well tolerated (DAWN study). In the SEED study, dorzagliatin significantly reduced glycosylated hemoglobin (HbA1c) by 1.07% and postprandial blood glucose by 2.83 mol/L, showing the great potential of this drug to control blood glucose in diabetic patients, with good safety and good tolerance. An extension of the SEED study, the DREAM study, confirmed that dorzagliatin monotherapy significantly improved 24-h glucose variability and increased time in range (TIR) to 83.7% over 46 weeks. Finally, the clinical study of dorzagliatin combined with metformin (DAWN study) confirmed that dorzagliatin could significantly reduce HbA1c by 1.02% and postprandial blood glucose by 5.45 mol/L. The current review summarizes the development of GK and GKA, as well as the prospects, trends, applications, and shortcomings of these treatments, especially future directions of clinical studies of dorzagliatin.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/therapeutic use , Glucokinase/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Drug Development , Enzyme Activators/therapeutic use , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
8.
Antibiotics (Basel) ; 13(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786177

ABSTRACT

Ticks transmit a variety of pathogens to their hosts by feeding on blood. The interactions and struggle between tick pathogens and hosts have evolved bilaterally. The components of tick saliva can directly or indirectly trigger host biological responses in a manner that promotes pathogen transmission; however, host cells continuously develop strategies to combat pathogen infection and transmission. Moreover, it is still unknown how host cells develop their defense strategies against tick-borne viruses during tick sucking. Here, we found that the tick saliva peptide HIDfsin2 enhanced the antiviral innate immunity of mouse macrophages by activating the Toll-like receptor 4 (TLR4) signaling pathway, thereby restricting tick-borne severe fever with thrombocytopenia syndrome virus (SFTSV) replication. HIDfsin2 was identified to interact with lipopolysaccharide (LPS), a ligand of TLR4, and then depolymerize LPS micelles into smaller particles, effectively enhancing the activation of the nuclear factor kappa-B (NF-κB) and type I interferon (IFN-I) signaling pathways, which are downstream of TLR4. Expectedly, TLR4 knockout completely eliminated the promotion effect of HIDfsin2 on NF-κB and type I interferon activation. Moreover, HIDfsin2 enhanced SFTSV replication in TLR4-knockout mouse macrophages, which is consistent with our recent report that HIDfsin2 hijacked p38 mitogen-activated protein kinase (MAPK) to promote the replication of tick-borne SFTSV in A549 and Huh7 cells (human cell lines) with low expression of TLR4. Together, these results provide new insights into the innate immune mechanism of host cells following tick bites. Our study also shows a rare molecular event relating to the mutual antagonism between tick-borne SFTSV and host cells mediated by the tick saliva peptide HIDfsin2 at the tick-host-virus interface.

9.
Biomaterials ; 310: 122621, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38815455

ABSTRACT

In vitro models of the human liver are promising alternatives to animal tests for drug development. Currently, primary human hepatocytes (PHHs) are preferred for pharmacokinetic and cytotoxicity tests. However, they are unable to recapitulate the flow of bile in hepatobiliary clearance owing to the lack of bile ducts, leading to the limitation of bile analysis. To address the issue, a liver organoid culture system that has a functional bile duct network is desired. In this study, we aimed to generate human iPSC-derived hepatobiliary organoids (hHBOs) consisting of hepatocytes and bile ducts. The two-step differentiation process under 2D and semi-3D culture conditions promoted the maturation of hHBOs on culture plates, in which hepatocyte clusters were covered with monolayered biliary tubes. We demonstrated that the hHBOs reproduced the flow of bile containing a fluorescent bile acid analog or medicinal drugs from hepatocytes into bile ducts via bile canaliculi. Furthermore, the hHBOs exhibited pathophysiological responses to troglitazone, such as cholestasis and cytotoxicity. Because the hHBOs can recapitulate the function of bile ducts in hepatobiliary clearance, they are suitable as a liver disease model and would be a novel in vitro platform system for pharmaceutical research use.

10.
BMC Biol ; 22(1): 110, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735918

ABSTRACT

BACKGROUND: Plants differ more than threefold in seed oil contents (SOCs). Soybean (Glycine max), cotton (Gossypium hirsutum), rapeseed (Brassica napus), and sesame (Sesamum indicum) are four important oil crops with markedly different SOCs and fatty acid compositions. RESULTS: Compared to grain crops like maize and rice, expanded acyl-lipid metabolism genes and relatively higher expression levels of genes involved in seed oil synthesis (SOS) in the oil crops contributed to the oil accumulation in seeds. Here, we conducted comparative transcriptomics on oil crops with two different SOC materials. In common, DIHYDROLIPOAMIDE DEHYDROGENASE, STEAROYL-ACYL CARRIER PROTEIN DESATURASE, PHOSPHOLIPID:DIACYLGLYCEROL ACYLTRANSFERASE, and oil-body protein genes were both differentially expressed between the high- and low-oil materials of each crop. By comparing functional components of SOS networks, we found that the strong correlations between genes in "glycolysis/gluconeogenesis" and "fatty acid synthesis" were conserved in both grain and oil crops, with PYRUVATE KINASE being the common factor affecting starch and lipid accumulation. Network alignment also found a conserved clique among oil crops affecting seed oil accumulation, which has been validated in Arabidopsis. Differently, secondary and protein metabolism affected oil synthesis to different degrees in different crops, and high SOC was due to less competition of the same precursors. The comparison of Arabidopsis mutants and wild type showed that CINNAMYL ALCOHOL DEHYDROGENASE 9, the conserved regulator we identified, was a factor resulting in different relative contents of lignins to oil in seeds. The interconnection of lipids and proteins was common but in different ways among crops, which partly led to differential oil production. CONCLUSIONS: This study goes beyond the observations made in studies of individual species to provide new insights into which genes and networks may be fundamental to seed oil accumulation from a multispecies perspective.


Subject(s)
Crops, Agricultural , Gene Expression Profiling , Gene Regulatory Networks , Plant Oils , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Plant Oils/metabolism , Gene Expression Profiling/methods , Transcriptome , Seeds/genetics , Seeds/metabolism , Gene Expression Regulation, Plant
11.
Chem Biol Interact ; 396: 111060, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38761876

ABSTRACT

Copper is a toxic heavy metal that causes various damage when it accumulates in the body beyond the physiological threshold. Wilson disease (WD) is an inherited disorder characterized by impaired copper metabolism. Reproductive damage in male patients with WD is gradually attracting attention. However, the underlying mechanisms of copper toxicity are unclear. In this study, we investigated the role of inflammation and PANoptosis in testicular damage and impaired spermatogenesis caused by copper deposition using the WD model toxic milk (TX) mice. Copper chelator-penicillamine and toll-like receptor 4 (TLR4) inhibitor-eritoran were used to intervene in TX mice in our animal experiment methods. Testis samples were collected from mice for further analysis. The results showed that the morphology and ultrastructure of the testis and epididymis in TX mice were damaged, and the sperm counts decreased significantly. The TLR4/nuclear factor kappa-B (NF-κB) signaling pathway was activated by copper deposition, which led to the upregulation of serum and testicular inflammatory factors in TX mice. Meanwhile, pyroptosis, apoptosis, and necroptosis were significant in the testis of TX mice. Both chelated copper or inhibited TLR4 expression markedly suppressed the TLR4/NF-κB signaling pathway, thereby reducing the expression of inflammatory factors. PANoptosis in the testis of TX mice was also reversed. Our study indicated that pathological copper exposure induces inflammation and PANoptosis through the TLR4/NF-κB signaling pathway, leading to toxic testicular damage and impaired spermatogenesis in WD.


Subject(s)
Copper , Hepatolenticular Degeneration , Inflammation , NF-kappa B , Signal Transduction , Spermatogenesis , Testis , Toll-Like Receptor 4 , Animals , Male , Toll-Like Receptor 4/metabolism , Copper/toxicity , Spermatogenesis/drug effects , Testis/drug effects , Testis/metabolism , Testis/pathology , NF-kappa B/metabolism , Signal Transduction/drug effects , Mice , Hepatolenticular Degeneration/pathology , Hepatolenticular Degeneration/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation/pathology , Apoptosis/drug effects , Penicillamine/pharmacology
12.
Bioresour Technol ; 402: 130839, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744396

ABSTRACT

The performance of an anaerobic ammonium oxidation (anammox) reactor with the magnetic field of 40 mT was systematically investigated. The total nitrogen removal rate was enhanced by 16% compared with that of the control group. The enhancing mechanism was elucidated from the improved mass transfer efficiency, the complicated symbiotic interspecific relationship and the improved levels of functional genes. The magnetic field promoted formation of the loose anammox granular sludge and the homogeneous and well-connected porous structure to enhance the mass transfer. Consequently, Candidatus Brocadia predominated in the sludge with an increase in abundance of 13%. Network analysis showed that the positive interactions between Candidatus Brocadia and heterotrophic bacteria were strengthened, which established a more complicated stable microbial community. Moreover, the magnetic field increased the levels of hdh by 26% and hzs by 35% to promote the nitrogen metabolic process. These results provided novel insights into the magnetic field-enhanced anammox process.


Subject(s)
Ammonium Compounds , Bioreactors , Magnetic Fields , Nitrogen , Oxidation-Reduction , Sewage , Anaerobiosis , Sewage/microbiology , Ammonium Compounds/metabolism , Nitrogen/metabolism , Bioreactors/microbiology , Bacteria/metabolism
13.
J Affect Disord ; 359: 287-299, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788859

ABSTRACT

BACKGROUND: Studies have been conducted on the relationship between depression and thyroid diseases and function, its causal relationship remains unclear. METHODS: Using summary statistics of genome-wide association studies of European and East Asian ancestry, we conducted 2-sample bidirectional Mendelian randomization to estimate the association between MDD and thyroid function (European: normal range TSH, T4, T3, fT4, TPOAb levels and TPOAb-positives; East Asian: T4) and thyroid diseases (hypothyroidism, hyperthyroidism, and Hashimoto's thyroiditis), and used Mediation analysis to evaluate potential mediators (alcohol intake, antidepressant) of the association and calculate the mediated proportions. RESULTS: It was observed a significant causal association between MDD on hypothyroidism (P = 8.94 × 10-5), hyperthyroidism (P = 8.68 × 10-3), and hashimoto's thyroiditis (P = 3.97 × 10-5) among European ancestry, which was mediated by Alcohol intake (alcohol intake versus 10 years previously for hypothyroidism (P = 0.026), hashimoto's thyroiditis (P = 0.042), and alcohol intake frequency for hypothyroidism (P = 0.015)) and antidepressant (for hypothyroidism (P = 0.008), hashimoto's thyroiditis (P = 0.010)), but not among East Asian ancestry (PMDD-hypothyroidism = 0.016, but ß direction was different; PMDD-hyperthyroidism = 0.438; PMDD-hashimoto's thyroiditis = 0.496). There was no evidence for bidirectional causal association between thyroid function mentioned above and MDD among both ancestry (all P > 0.05). CONCLUSION: We importantly observed a significant causal association between MDD on risk of hypothyroidism, hyperthyroidism, and hashimoto's thyroiditis among European ancestry, and Alcohol intake and antidepressant as mediators for prevention of hypothyroidism, hashimoto's thyroiditis attributable to MDD.

14.
Nutr Diabetes ; 14(1): 23, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653987

ABSTRACT

BACKGROUND: The number of patients with type 1 diabetes rises rapidly around the world in recent years. Maternal diabetes has a detrimental effect on reproductive outcomes due to decreased oocyte quality. However, the strategies to improve the oocyte quality and artificial reproductive technology (ART) efficiency of infertile females suffering from diabetes have not been fully studied. In this study, we aimed to examine the effects of nicotinamide mononucleotide (NMN) on oocyte maturation of mouse with type 1 diabetes mouse and explore the underlying mechanisms of NMN's effect. METHODS: Streptozotocin (STZ) was used to establish the mouse models with type 1 diabetes. The successful establishment of the models was confirmed by the results of body weight test, fasting blood glucose test and haematoxylin and eosin (H&E) staining. The in vitro maturation (IVM) rate of oocytes from diabetic mice was examined. Immunofluorescence staining (IF) was performed to examine the reactive oxygen species (ROS) level, spindle/chromosome structure, mitochondrial function, actin dynamics, DNA damage and histone modification of oocytes, which are potential factors affecting the oocyte quality. The quantitative reverse transcription PCR (RT-qPCR) was used to detect the mRNA levels of Sod1, Opa1, Mfn2, Drp1, Sirt1 and Sirt3 in oocytes. RESULTS: The NMN supplementation increased the oocyte maturation rate of the mice with diabetes. Furthermore, NMN supplementation improved the oocyte quality by rescuing the actin dynamics, reversing meiotic defects, improving the mitochondrial function, reducing ROS level, suppressing DNA damage and restoring changes in histone modifications of oocytes collected from the mice with diabetes. CONCLUSION: NMN could improve the maturation rate and quality of oocytes in STZ-induced diabetic mice, which provides a significant clue for the treatment of infertility of the patients with diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Dynamins , Nicotinamide Mononucleotide , Oocytes , Reactive Oxygen Species , Animals , Mice , Female , Oocytes/drug effects , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Experimental/drug therapy , Reactive Oxygen Species/metabolism , Nicotinamide Mononucleotide/pharmacology , Mitochondria/drug effects , Mitochondria/metabolism , Sirtuin 1/metabolism , Sirtuin 3/metabolism , In Vitro Oocyte Maturation Techniques/methods , Superoxide Dismutase-1 , DNA Damage/drug effects , Streptozocin , Oogenesis/drug effects
15.
Front Pharmacol ; 15: 1339406, 2024.
Article in English | MEDLINE | ID: mdl-38659573

ABSTRACT

Type 2 diabetes presents a significant global health burden and is frequently linked to serious clinical complications, including diabetic cardiomyopathy, nephropathy, and retinopathy. Astragalus polysaccharide (APS), extracted from Astragalus membranaceus, exhibits various biochemical and physiological effects. In recent years, a growing number of researchers have investigated the role of APS in glucose control and the treatment of diabetes and its complications in various diabetes models, positioning APS as a promising candidate for diabetes therapy. This review surveys the literature on APS from several databases over the past 20 years, detailing its mechanisms of action in preventing and treating diabetes mellitus. The findings indicate that APS can address diabetes by enhancing insulin resistance, modulating the immune system, protecting islet cells, and improving the intestinal microbiota. APS demonstrates positive pharmacological value and clinical potential in managing diabetic complications, including diabetic retinopathy, nephropathy, cardiomyopathy, cognitive dysfunction, wound healing, and more. However, further research is necessary to explore APS's bioavailability, optimal dosage, and additional clinical evidence.

16.
aBIOTECH ; 5(1): 71-93, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576433

ABSTRACT

The garden pea (Pisum sativum L.) is a significant cool-season legume, serving as crucial food sources, animal feed, and industrial raw materials. The advancement of functional genomics over the past two decades has provided substantial theoretical foundations and progress to pea breeding. Notably, the release of the pea reference genome has enhanced our understanding of plant architecture, symbiotic nitrogen fixation (SNF), flowering time, floral organ development, seed development, and stress resistance. However, a considerable gap remains between pea functional genomics and molecular breeding. This review summarizes the current advancements in pea functional genomics and breeding while highlighting the future challenges in pea molecular breeding.

17.
Childs Nerv Syst ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635073

ABSTRACT

BACKGROUND: Craniopharyngioma is a common intracranial tumour in children. Clinical manifestations are related to hypothalamic/pituitary deficiencies, visual impairment, and increased intracranial pressure. Defects in pituitary function cause shortages of growth hormone, gonadotropin, corticotropin, thyrotropin, and vasopressin, resulting in short stature, delayed puberty, feebleness, lethargy, polyuria, etc. However, manifestations involving precocious puberty (PP) are rare. CASE REPORT: In both patients, surgical resection was performed after the diagnosis of craniopharyngioma, and breast development occurred postoperatively at one month in one patient and at one year and three months in the other patient. Central precocious puberty (CPP) was diagnosed via relevant examinations. Leuprorelin was injected subcutaneously every 28 days, and changes in height, weight, bone age, gonadal ultrasound and sex hormones were recorded. During the follow-up of the two children, the sex hormone levels were significantly reduced, and significant acceleration in bone age was not observed. CONCLUSIONS: CPP was induced by craniopharyngioma surgery, and treatment with gonadotropin-releasing hormone analogues (GnRHa) inhibited sexual development and bone age progression. More attention should be given to monitoring for CPP during long-term follow-up of craniopharyngiomas in the clinic.

18.
Brain Sci ; 14(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38671985

ABSTRACT

We aimed to examine the association of traditional Chinese herbal dietary formulas with ability of daily life and physical function in elderly patients with mild cognitive impairment. The current study included 60 cases of elderly patients with mild cognitive impairment from Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai University of Traditional Chinese Medicine and Hongkou District, Shanghai. The participants were randomly divided into two groups: group A (herbal dietary formula group, consisting of Alpiniae Oxyphyllae Fructus, Nelumbinis plumula, Chinese Yam, Poria cocos, and Jineijin), 30 cases, and group B (vitamin E), 30 cases, treatment for 3 months. Cognitive function was measured using the Montreal Cognitive Assessment (MOCA) and Mini-Mental State Examination (MMSE); body function was measured using the Chinese Simplified Physical Performance Test (CMPPT), including stand static balance, sitting-up timing, squat timing, and six-meter walk timing. Daily life based on ability was measured by grip strength and the Activity of Daily Living Scale (ADL). The lower the scores of the above items, the poorer the disease degree, except for ADL: the lower the score, the higher the self-care ability. After 3 months of treatment, the two-handed grip strength of both the herbal dietary formula group and vitamin E group increased; the ADL, sitting-up timing, squatting timing, and six-meter walking timing decreased after medication, being statistically significantly different (p < 0.05). The two-handed grip strength of group A increased significantly, and the ADL, sitting-up timing, squatting timing, and six-meter walking timing decreased distinctly compared with the vitamin E group. There was a statistically significant difference (p < 0.05). The scores of MMSE, MOCA, total CMPPT, and standing static balance of the herbal dietary formula group increased after medication. The difference was statistically significant (p < 0.05). The vitamin E group's MMSE and MOCA scores, CMPPT total scores, and standing resting balance scores did not change significantly after medication (p > 0.05). In summary, a traditional Chinese herbal dietary formula can improve body and cognitive function in patients with MCI, and the curative effect is better than that of vitamin E. Traditional Chinese herbal dietary formulas can improve the daily life quality of MCI patients, which has clinical application value.

19.
J Ethnopharmacol ; 330: 118222, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38663778

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Cinnamomum cassia Presl (Cinnamomum cassia) is a common traditional Chinese medicine, which can promote the secretion and digestion of gastric juice, improve the function of gastrointestinal tract. Cinnamaldehyde (CA) is a synthetic food flavoring in the Chinese Pharmacopoeia. AIM OF THE STUDY: This study aimed to search for the active ingredient (CA) of inhibiting H. pylori from Cinnamomum cassia, and elucidate mechanism of action, so as to provide the experimental basis for the treatment of H. pylori infection with Cinnamomum cassia. MATERIALS AND METHODS: It's in vitro and in vivo pharmacological properties were evaluated based on minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and an acute gastric inflammation model in mice infected with H. pylori. Drug safety was evaluated using the CCK8 method and high-dose administration in mice. The advantageous characteristics of CA in inhibiting H. pylori were confirmed using acidic conditions and in combination with the antibiotics. The mechanism underlying the action of CA on H. pylori was explored using scanning electron microscopy (SEM), adhesion experiments, biofilm inhibition tests, ATP and ROS release experiments, and drug affinity responsive target stability (DARTS) screening of target proteins. The protein function and target genes were verified by molecular docking and Real-Time quantitative reverse transcription PCR (qRT-PCR). RESULTS: The results demonstrated that CA was found to be the main active ingredient against H. pylori in Cinnamomum cassia in-vitro tests, with a MIC of 8-16 µg/mL. Moreover, CA effectively inhibited both sensitive and resistant H. pylori strains. The dual therapy of PPI + CA exhibited remarkable in vivo efficacy in the acute gastritis mouse model, superior to the standard triple therapy. DARTS, molecular docking, and qRT-PCR results suggested that the target sites of action were closely associated with GyrA, GyrB, AtpA, and TopA, which made DNA replication and transcription impossible, then leading to inhibition of bacterial adhesion and colonization, suppression of biofilm formation, and inhibition ATP and enhancing ROS. CONCLUSIONS: This study demonstrated the suitability of CA as a promising lead drug against H. pylori, The main mechanisms can target GyrA ect, leading to reduce ATP and produce ROS, which induces the apoptosis of bacterial.


Subject(s)
Acrolein , Anti-Bacterial Agents , Cinnamomum aromaticum , Helicobacter Infections , Helicobacter pylori , Microbial Sensitivity Tests , Animals , Acrolein/analogs & derivatives , Acrolein/pharmacology , Helicobacter pylori/drug effects , Cinnamomum aromaticum/chemistry , Anti-Bacterial Agents/pharmacology , Mice , Helicobacter Infections/drug therapy , Helicobacter Infections/microbiology , Male , Molecular Docking Simulation , Biofilms/drug effects
20.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124255, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38608562

ABSTRACT

The kidney allograft has been under continuous attack from diverse injuries since the very beginning of organ procurement, leading to a gradual decline in function, chronic fibrosis, and allograft loss. It is vital to routinely and precisely monitor the risk of injuries after renal transplantation, which is difficult to achieve because the traditional laboratory tests lack sensitivity and specificity, and graft biopsies are invasive with the risk of many complications and time-consuming. Herein, a novel method for the diagnosis of graft injury is demonstrated, using deep learning-assisted surface-enhanced Raman spectroscopy (SERS) of the urine analysis. Specifically, we developed a hybrid SERS substrate composed of gold and silver with high sensitivity to the urine composition under test, eliminating the need for labels, which makes measurements easy to perform and meanwhile results in extremely abundant and complex Raman vibrational bands. Deep learning algorithms were then developed to improve the interpretation of the SERS spectral fingerprints. The deep learning model was trained with SERS signals of urine samples of recipients with different injury types including delayed graft function (DGF), calcineurin-inhibitor toxicity (CNIT), T cell-mediated rejection (TCMR), antibody-mediated rejection (AMR), and BK virus nephropathy (BKVN), which explored the features of these types and achieved the injury differentiation with an overall accuracy of 93.03%. The results highlight the potential of combining label-free SERS spectroscopy with deep learning as a method for liquid biopsy of kidney allograft injuries, which can provide great potential to diagnose and evaluate allograft injuries, and thus extend the life of kidney allografts.


Subject(s)
Deep Learning , Kidney Transplantation , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Humans , Kidney Transplantation/adverse effects , Allografts , Graft Rejection/diagnosis , Graft Rejection/urine , Gold/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...