Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Front Physiol ; 13: 1036945, 2022.
Article in English | MEDLINE | ID: mdl-36388122

ABSTRACT

The incidence of heart failure after myocardial infarction (MI) remains high and the underlying causes are incompletely understood. The crosstalk between heart and adipose tissue and stimulated lipolysis has been identified as potential driver of heart failure. Lipolysis is also activated acutely in response to MI. However, the role in the post-ischemic remodeling process and the contribution of different depots of adipose tissue is unclear. Here, we employ a mouse model of 60 min cardiac ischemia and reperfusion (I/R) to monitor morphology, cellular infiltrates and gene expression of visceral and subcutaneous white adipose tissue depots (VAT and SAT) for up to 28 days post ischemia. We found that in SAT but not VAT, adipocyte size gradually decreased over the course of reperfusion and that these changes were associated with upregulation of UCP1 protein, indicating white adipocyte conversion to the so-called 'brown-in-white' phenotype. While this phenomenon is generally associated with beneficial metabolic consequences, its role in the context of MI is unknown. We further measured decreased lipogenesis in SAT together with enhanced infiltration of MAC-2+ macrophages. Finally, quantitative PCR analysis revealed transient downregulation of the adipokines adiponectin, leptin and resistin in SAT. While adiponectin and leptin have been shown to be cardioprotective, the role of resistin after MI needs further investigation. Importantly, all significant changes were identified in SAT, while VAT was largely unaffected by MI. We conclude that targeted interference with lipolysis in SAT may be a promising approach to promote cardiac healing after ischemia.

2.
J Mol Cell Cardiol ; 173: 47-60, 2022 12.
Article in English | MEDLINE | ID: mdl-36150524

ABSTRACT

Diabetes mellitus type 2 is associated with adverse clinical outcome after myocardial infarction. To better understand the underlying causes we here investigated sarcomere protein function and its calcium-dependent regulation in the non-ischemic remote myocardium (RM) of diabetic mice (db/db) after transient occlusion of the left anterior descending coronary artery. Before and 24 h after surgery db/db and non-diabetic db/+ underwent magnetic resonance imaging followed by histological and biochemical analyses of heart tissue. Intracellular calcium transients and sarcomere function were measured in isolated cardiomyocytes. Active and passive force generation was assessed in skinned fibers and papillary muscle preparations. Before ischemia and reperfusion (I/R), beat-to-beat calcium cycling was depressed in diabetic cardiomyocytes. Nevertheless, contractile function was preserved owing to increased myofilament calcium sensitivity and higher responsiveness of myocardial force production to ß-adrenergic stimulation in db/db compared to db/+. In addition, protein kinase C activity was elevated in db/db hearts leading to strong phosphorylation of the titin PEVK region and increased titin-based tension of myofilaments. I/R impaired the function of whole hearts and RM sarcomeres in db/db to a larger extent than in non-diabetic db/+, and we identified several reasons. First, the amplitude and the kinetics of cardiomyocyte calcium transients were further reduced in the RM of db/db. Underlying causes involved altered expression of calcium regulatory proteins. Diabetes and I/R additively reduced phospholamban S16-phosphorylation by 80% (P < 000.1) leading to strong inhibition of the calcium ATPase SERCA2a. Second, titin stiffening was only observed in the RM of db/+, but not in the RM of db/db. Finally, db/db myofilament calcium sensitivity and force generation upon ß-adrenergic stimulation were no longer enhanced over db/+ in the RM. The findings demonstrate that impaired cardiomyocyte calcium cycling of db/db hearts is compensated by increased myofilament calcium sensitivity and increased titin-based stiffness prior to I/R. In contrast, sarcomere function of the RM 24 h after I/R is poor because both these compensatory mechanisms fail and myocyte calcium handling is further depressed.


Subject(s)
Diabetes Mellitus, Experimental , Myocardial Infarction , Mice , Animals , Connectin/metabolism , Calcium/metabolism , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocardial Infarction/metabolism , Reperfusion , Adrenergic Agents , Myocardial Contraction
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142246

ABSTRACT

Transdifferentiation of Schwann cells is essential for functional peripheral nerve regeneration after injury. By activating a repair program, Schwann cells promote functional axonal regeneration and remyelination. However, chronic denervation, aging, metabolic diseases, or chronic inflammatory processes reduce the transdifferentiation capacity and thus diminish peripheral nerve repair. It was recently described that the sphingosine-1-phosphate receptor (S1PR) agonist Fingolimod enhances the Schwann cell repair phenotype by activation of dedifferentiation markers and concomitant release of trophic factors resulting in enhanced neurite growth. Since Fingolimod targets four out of five S1PRs (S1P1, S1P3-5) possibly leading to non-specific adverse effects, identification of the main receptor(s) responsible for the observed phenotypic changes is mandatory for future specific treatment approaches. Our experiments revealed that S1P3 dominates and that along with S1P1 acts as the responsible receptor for Schwann cell transdifferentiation as revealed by the combinatory application of specific agonists and antagonists. Targeting both receptors reduced the expression of myelin-associated genes, increased PDGF-BB representing enhanced trophic factor expression likely to result from c-Jun induction. Furthermore, we demonstrated that S1P4 and S1P5 play only a minor role in the adaptation of the repair phenotype. In conclusion, modulation of S1P1 and S1P3 could be effective to enhance the Schwann cell repair phenotype and thus stimulate proper nerve repair.


Subject(s)
Fingolimod Hydrochloride , Schwann Cells , Becaplermin/metabolism , Fingolimod Hydrochloride/metabolism , Fingolimod Hydrochloride/pharmacology , Nerve Regeneration/physiology , Phenotype , Receptors, Lysosphingolipid/genetics , Receptors, Lysosphingolipid/metabolism , Schwann Cells/metabolism , Sphingosine-1-Phosphate Receptors
4.
J Xray Sci Technol ; 27(4): 703-714, 2019.
Article in English | MEDLINE | ID: mdl-31227680

ABSTRACT

OBJECTIVE: The skin marking method (SMM) and bow-form-ruler marking method (BFRM) are two commonly used patient marking methods in mainland China. This study aims to evaluate SMM and BFRM by comparing the inter-fraction setup errors from using these two methods together with vacuum cushion immobilization in patients underwent radiotherapy for different treatment sites. MATERIALS AND METHODS: Eighteen patients diagnosed with pelvic, abdominal and thoracic malignant tumors (with 6 patients per treatment site) were enrolled in this prospective study. All patients were immobilized with vacuum cushion. Each patient was marked by both SMM and BFRM before computed tomography (CT) simulation. Target location was verified by cone beam CT images with displacements assessed prior to each sampled treatment session. The localization errors in three translational and three rotational directions were recorded and analyzed. RESULTS: Images from 108 fractions in 18 patients produced 324 translational and 324 rotational comparisons for SMM and BFRM. The setup errors of all treatment sites showed no difference in two marking methods in any directions (p > 0.05). In subgroups of treatment site analysis, SMM significantly lessened the lateral and yaw setup errors compared to BFRM in the pelvic sites (0.39±1.85 mm vs -1.28±1.13 mm, p < 0.01 and -0.19±0.59° vs -0.61±0.59°, p < 0.05). However, in the abdominal subgroup, BFRM was superior to SMM for reduced vertical errors (0.17±2.73 mm vs 2.28±3.16 mm, p < 0.05). For the underweight or obese patients (with Body Mass Index, BMI < 18.5 or BMI≥24), SMM resulted in less yaw errors compared to BFRM (-0.05±0.38° vs -0.43±0.48°, p < 0.05). No significant difference between SMM and BFRM in setup errors of normal weighted patients (18.5≤BMI < 24) was observed for all three studied treatment sites. CONCLUSIONS: This study shows no significant difference in patient setup errors for various treatment sites between SMM and BFRM in general. SMM may be suitable for the pelvic tumor and patients with BMI < 18.5 or BMI≥24, while BFRM is recommended for the abdominal tumor sites.


Subject(s)
Immobilization , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Adolescent , Adult , Aged , Aged, 80 and over , Body Mass Index , Cone-Beam Computed Tomography , Female , Humans , Male , Middle Aged , Neoplasms/diagnostic imaging , Neoplasms/radiotherapy , Patient Positioning , Prospective Studies , Radiotherapy Setup Errors , Young Adult
5.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(3): 469-75, 2013 Jun.
Article in Chinese | MEDLINE | ID: mdl-23865302

ABSTRACT

In the traditional P300 brain-computer interface (BCI) system, the electroencephalogram (EEG) signals can only provide limited information with a low signal-to-noise ratio. A BCI paradigm under visual stimulus was proposed in our study aiming to effectively activate the related brain areas and response signal while dealing with specific cognitive task (mental arithmetic task), so as to enhance the EEG signals. The result was compared with the traditional P300 counting task paradigm. Then the collected EEG data were preprocessed including extracting signal features with coherent averaging method, and analyzing the influences of different experimental paradigms on main components of event related potential (ERP). In the improved paradigm experiments the average increasing rate of P300 amplitude was 6. 83MV (73. 94%). The brain activity from 400ms was more active and lasted longer. Besides, unlike traditional counting task, mental arithmetic task appeared to have apparent activation at 650ms. The results showed that the improved paradigm could activate the related brain areas better and enhance the characteristics of signal. This provides a new system paradigm for BCI.


Subject(s)
Brain-Computer Interfaces , Event-Related Potentials, P300/physiology , Mathematical Concepts , Mental Processes/physiology , Electroencephalography , Humans , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...