Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1373669, 2024.
Article in English | MEDLINE | ID: mdl-38711605

ABSTRACT

(E)-ß-Farnesene (EBF) serves as the primary component of the alarm pheromone used by most aphid pest species. Pyrethrum (Tanacetum cinerariifolium) exhibits tissue-specific regulation of EBF accumulation and release, effectively mimicking the aphid alarm signal, deterring aphid attacks while attracting aphid predators. However, cultivated chrysanthemum (Chrysanthemum morifolium), a popular and economically significant flower, is highly vulnerable to aphid infestations. In this study, we investigated the high expression of the pyrethrum EBF synthase (TcEbFS) gene promoter in the flower head and stem, particularly in the parenchyma cells. Subsequently, we introduced the TcEbFS gene, under the control of its native promoter, into cultivated chrysanthemum. This genetic modification led to increased EBF accumulation in the flower stem and young flower bud, which are the most susceptible tissues to aphid attacks. Analysis revealed that aphids feeding on transgenic chrysanthemum exhibited prolonged probing times and extended salivation durations during the phloem phase, indicating that EBF in the cortex cells hindered their host-location behavior. Interestingly, the heightened emission of EBF was only observed in transgenic chrysanthemum flowers after mechanical damage. Furthermore, we explored the potential of this transgenic chrysanthemum for aphid resistance by comparing the spatial distribution and storage of terpene volatiles in different organs and tissues of pyrethrum and chrysanthemum. This study provides valuable insights into future trials aiming for a more accurate replication of alarm pheromone release in plants. It highlights the complexities of utilizing EBF for aphid resistance in cultivated chrysanthemum and calls for further investigations to enhance our understanding of this defense mechanism.

2.
Pest Manag Sci ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38567786

ABSTRACT

BACKGROUND: The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS: In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, ß-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION: By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.

3.
Planta ; 259(2): 41, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38270671

ABSTRACT

MAIN CONCLUSION: In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.


Subject(s)
Magnoliopsida , Pollination , Biological Transport , Reproduction , Terpenes
4.
Insect Sci ; 31(1): 134-146, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37358042

ABSTRACT

Monochamus alternatus is the primary carrier of pine wood nematodes, which pose a serious threat to Pinus spp. in many countries. Newly emerging M. alternatus adults feed on heathy host pines, while matured adults transfer to stressed host pines for mating and oviposition. Several odorant-binding proteins (OBPs) of M. alternatus have been proved to aid in the complex process of host location. To clarify the corresponding relations between OBPs and pine volatiles, more OBPs need to be studied. In this research, MaltOBP19 showed a specific expression in the antennae and mouthparts of M. alternatus, and it was marked in 4 types of antenna sensilla by immunolocalization. Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro. In Y-tube olfactory experiments, M. alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index. Myrcene induced phobotaxis, but RNAi had no significant effect on this behavior. Further, we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19. These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene, which has been identified to be strongly released in stressed host pines. In addition, it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M. alternatus adults, providing a new perspective in the control of M. alternatus.


Subject(s)
Alkenes , Coleoptera , Pinus , Receptors, Odorant , Female , Animals , Coleoptera/genetics , Acyclic Monoterpenes/pharmacology , Bicyclic Monoterpenes/pharmacology
5.
J Agric Food Chem ; 71(27): 10291-10303, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37382541

ABSTRACT

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are thought to play key roles in the olfactory recognition of insects, can be induced by the odorants they recognize, but little is known about the underlying regulatory mechanisms. Here, we found that NlOBP8 and NlCSP10 play coordinative roles in the chemoreception of brown planthoppers (BPHs) to the volatile component linalool. Also, the relative mRNA levels of NlObp8 and NlCp10 decreased upon exposure to linalool. Further, homeotic protein distal-less (Dll), which was also highly expressed in the antennae, was found to positively regulate the transcription of NlObp8 and NlCsp10 directly. Knocking down NlDll expression downregulated the expression of many additional olfactory functional genes and impaired the repellent behavior of BPHs to linalool. Our findings elucidate the direct regulatory role of Dll in BPHs' olfactory plasticity to linalool through modulating the olfactory functional gene expression and could provide guidance to sustainably control BPHs in the field.


Subject(s)
Hemiptera , Receptors, Odorant , Animals , Hemiptera/metabolism , Insecta/metabolism , Acyclic Monoterpenes/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Odorants , Insect Proteins/genetics , Insect Proteins/metabolism
6.
Pest Manag Sci ; 79(10): 4034-4047, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37287215

ABSTRACT

BACKGROUND: Phenacoccus solenopsis is a polyphagous invasive mealybug that caused serious damage to crops worldwide. Phloem-sucking hemipterans are known to carry symbiotic microbes in their saliva. However, the role of salivary bacteria of P. solenopsis in modulating plant defenses remains limited. Exploring the impact of salivary bacteria on plant defense responses will contribute to the development of new targets for efficient control of invasive mealybugs. RESULTS: Salivary bacteria of the invasive mealybug P. solenopsis can suppress herbivore-induced plant defenses and thus enhance mealybug fitness. Mealybugs treated with an antibiotic showed decreased weight gain, fecundity and survival. Untreated mealybugs suppressed jasmonic acid (JA)-regulated defenses but activated salicylic acid (SA)-regulated defenses in cotton plants. In contrast, antibiotic-treated mealybugs triggered JA-responsive gene expression and JA accumulation, and showed shortened phloem ingestion. Reinoculating antibiotic-treated mealybugs with Enterobacteriaceae or Stenotrophomonas cultivated from mealybug saliva promoted phloem ingestion and fecundity, and restored the ability of mealybugs to suppress plant defenses. Fluorescence in situ hybridization visualization revealed that Enterobacteriaceae and Stenotrophomonas colonize salivary glands and are secreted into the mesophyll cells and phloem vessels. Exogenous application of the bacterial isolates to plant leaves inhibited JA-responsive gene expression and activated SA-responsive gene expression. CONCLUSION: Our findings imply that symbiotic bacteria in the saliva of the mealybug play an important role in manipulating herbivore-induced plant defenses, enabling this important pest to evade induced plant defenses and promoting its performance and destructive effects on crops. © 2023 Society of Chemical Industry.


Subject(s)
Ants , Hemiptera , Animals , In Situ Hybridization, Fluorescence , Hemiptera/physiology , Herbivory , Salicylic Acid/pharmacology , Salicylic Acid/metabolism , Anti-Bacterial Agents/pharmacology , Ants/metabolism , Bacteria , Enterobacteriaceae/metabolism
7.
Int J Biol Macromol ; 243: 125152, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37270128

ABSTRACT

Odorant-binding proteins (OBPs) are thought to bind and deliver hydrophobic odorants from the environment to receptors on insect sensory neurons, and have been used to screen behaviorally active compounds of insects. In order to screen behaviorally active compounds for Monochamus alternatus by OBPs, we cloned full length of Obp12 coding sequence from M. alternatus and proved secretion property of MaltOBP12, then tested binding affinities of recombinant MaltOBP12 to 12 pine volatiles in vitro. We confirmed MaltOBP12 has binding affinities to 9 pine volatiles. The structure of MaltOBP12 and protein-ligand interactions were further analyzed by homology modeling, molecular docking, site-directed mutagenesis, and ligand-binding assays. These results demonstrated that the binding pocket of MaltOBP12 consists of several large aromatic and hydrophobic residues, and four aromatic residues (Tyr50, Phe109, Tyr112, Phe122) are essential for odorant-binding; ligands adopt extensive hydrophobic interactions with an overlapping subset of residues in the binding pocket. Finally, based on non-directional hydrophobic interactions, MaltOBP12 binds odorants flexibly. These findings will not only help us understand how OBPs flexibly bind odorants but also promote to screen of behaviourally active compounds by computer methods to prevent M. alternatus in the future.


Subject(s)
Coleoptera , Receptors, Odorant , Animals , Molecular Docking Simulation , Odorants , Ligands , Receptors, Odorant/chemistry , Coleoptera/metabolism , Insect Proteins/metabolism
8.
Int J Mol Sci ; 24(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36834874

ABSTRACT

Natural enemies such as parasitoids and parasites depend on sensitive olfactory to search for their specific hosts. Herbivore-induced plant volatiles (HIPVs) are vital components in providing host information for many natural enemies of herbivores. However, the olfactory-related proteins involved in the recognition of HIPVs are rarely reported. In this study, we established an exhaustive tissue and developmental expression profile of odorant-binding proteins (OBPs) from Dastarcus helophoroides, an essential natural enemy in the forestry ecosystem. Twenty DhelOBPs displayed various expression patterns in different organs and adult physiological states, suggesting a potential involvement in olfactory perception. In silico AlphaFold2-based modeling and molecular docking showed similar binding energies between six DhelOBPs (DhelOBP4, 5, 6, 14, 18, and 20) and HIPVs from Pinus massoniana. While in vitro fluorescence competitive binding assays showed only recombinant DhelOBP4, the most highly expressed in the antennae of emerging adults could bind to HIPVs with high binding affinities. RNAi-mediated behavioral assays indicated that DhelOBP4 was an essential functional protein for D. helophoroides adults recognizing two behaviorally attractive substances: p-cymene and γ-terpinene. Further binding conformation analyses revealed that Phe 54, Val 56, and Phe 71 might be the key binding sites for DhelOBP4 interacting with HIPVs. In conclusion, our results provide an essential molecular basis for the olfactory perception of D. helophoroides and reliable evidence for recognizing the HIPVs of natural enemies from insect OBPs' perspective.


Subject(s)
Coleoptera , Receptors, Odorant , Animals , Herbivory , Ecosystem , Molecular Docking Simulation , Coleoptera/metabolism , Receptors, Odorant/metabolism , Insect Proteins/metabolism , Arthropod Antennae/metabolism
9.
Pest Manag Sci ; 79(1): 105-113, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36088646

ABSTRACT

BACKGROUND: Plants respond to attackers by triggering phytohormones signaling associated metabolites, including herbivore-induced plant volatiles (HIPVs). HIPVs can indirectly act against herbivory by recruitment of natural enemies and priming of neighboring plants. Ostrinia furnacalis and Mythimna separata are important insect herbivores of maize plants that have a devastating influence on yield. However, little is known about how maize temporally reconfigures its defense systems against these herbivores and variation of neighboring plant resistance. RESULTS: This study investigated the effects of HIPVs on the behavior of the dominant predatory beetle Harmonia axyridis and priming in neighboring maize defense against O. furnacalis and M. separata over time. The results showed that maize damaged by either O. furnacalis or M. separata enhanced the release of volatiles including terpenes, aldehydes, alkanes and an ester, which elicited an increased attractive response to H. axyridis after 3 and 12 h, respectively. O. furnacalis damage resulted in accumulations of leaf jasmonic acid (JA) and salicylic acid in maize after 6 and 3 h, respectively, while M. separata damage only raised the JA level after 3 h. Furthermore, HIPVs were able to prime neighboring plants through the accumulation of JA after 24 h. Both larvae showed a significant decrease in weight accumulation after 48 h of feeding on the third leaves of the primed plant. CONCLUSION: Taken together, the findings provide a dynamic overview of how attacked maize reconfigures its volatiles and phytohormones to defend against herbivores, as well as priming of neighboring plants against oncoming attacks. © 2022 Society of Chemical Industry.


Subject(s)
Zea mays
10.
J Agric Food Chem ; 70(51): 16323-16334, 2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36511755

ABSTRACT

Odorant binding proteins (OBPs) play an important role in insect peripheral olfactory systems and exploring the physiological function of OBPs could facilitate the understanding of insects' chemical communication. Here, the functional analysis of an antenna-based NlugOBP8 from brown planthopper (BPH) Nilaparvata lugens (Stål) was performed both in vitro and in vivo. Recombinant NlugOBP8 exhibited strong binding affinity to 13 out of 26 rice plant volatiles and could form a stable complex with 9 of them according to the fluorescence binding and fluorescence quenching experiments. Circular dichroism spectra demonstrated that six volatiles could give rise to significant conformational change of recombinant NlugOBP8. H-tube olfactometer bioassay confirmed that BPHs were significantly attracted by nerolidol and significantly repelled by linalool, caryophyllene oxide, and terpinolene, respectively. Antennae of dsNlugOBP8-injected BPHs exhibited significantly lower electrophysiological response to linalool and caryophyllene oxide. Moreover, the repellent responses of BPHs to these two volatiles were also impaired upon silencing NlugOBP8. These data suggest that NlugOBP8 is involved in recognizing linalool and caryophyllene oxide and provide additional target for the sustainable control of BPHs.


Subject(s)
Hemiptera , Oryza , Animals , Terpenes/pharmacology , Hemiptera/physiology , Perception
11.
Insects ; 13(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421956

ABSTRACT

Tipulidae, one of the most diverse families of Diptera, is widely distributed in the world. The adults have weak flight ability, making it an ideal model for studying the formation of insect diversity. This study aims to explore the species diversity and endemism of Tipulidae in the Qinghai-Tibet Plateau and the surrounding areas, as well as analyze the relationships between the diversity pattern and 25 environmental factors in mountainous and non-mountainous regions. To this end, we collected 2589 datasets for the distribution of 1219 Tipulidae species, and found three areas with high diversities of Tipulidae around the QTP, including the Sikkim-Yadong area, Kamen River Basin, and Gongga Mountain. Further R, generalized additive model (GAM), and stepwise multiple regression analysis indicated that the richness and endemism of Tipulidae is mainly influenced by the warmest quarter precipitation and topographic heterogeneity in mountainous regions, but in non-mountainous regions, the richness is mostly affected by the precipitation seasonality, while there is no regularity in the relationship between endemism and environmental factors. In addition, the richness model in mountainous regions was in conformity with the results of GAM.

12.
J Econ Entomol ; 115(5): 1521-1530, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36029237

ABSTRACT

The tea green leafhopper, Empoasca onukii Matsuda (Hemiptera: Cicadellidae) is currently one of the most threatening pests of tea production in China. Several approaches have been used to identify the resistance of different tea cultivars to this important tea pest. However, relatively limited information has been documented about its oviposition preferences. This study aimed to elucidate the preferential oviposition of E. onukii among 24 tea cultivars. Towards this objective, a multi-selective test for E. onukii oviposition was conducted in the laboratory, and the egg densities of E. onukii on 24 varieties were also surveyed in plantations at different time periods during the tea plant growing season in 2019. There was a significant difference in E. onukii egg densities among the 24 cultivars studied in both laboratory tests and the field investigations. Moreover, there was a positive correlation between the laboratory and field data for the number of eggs laid per cultivar. According to the laboratory and field evaluations, 2 cultivars were identified as very-susceptible for E. onukii oviposition, while another 5 cultivars were assigned as susceptible, 9 cultivars were classified as resistant and 2 cultivars were identified as very-resistant, respectively. This information on the oviposition preference for E. onukii on different cultivars could be used as a selection parameter for further breeding of leafhopper-resistant tea cultivars.


Subject(s)
Camellia sinensis , Hemiptera , Animals , Female , Oviposition , Plant Breeding , Tea
13.
Environ Sci Technol ; 56(17): 12440-12451, 2022 09 06.
Article in English | MEDLINE | ID: mdl-35944015

ABSTRACT

Ants easily accumulate cadmium (Cd) from the food web in terrestrial ecosystems. Cd contamination may cause olfactory dysfunction and consequently disorders in the social behavior of ants. To explore the molecular mechanism underlying the effect of Cd exposure on the chemosensory process of ants, we characterized the Cd-induced variations in the expression of genes involved in chemoreception and electrophysiological and behavioral sensitivity to semiochemicals by using the red imported fire ant, Solenopsis invicta, as a model system. As a result, Cd exposure increased Cd accumulation and decreased the survival rate of S. invicta. Cd exposure altered the expression profiles of odor binding protein genes of S. invicta (SiOBPs). Specifically, SiOBP15 protein expression was upregulated upon Cd exposure. Both SiOBP7 and SiOBP15 exhibited high binding affinities to limonene, nonanal, and 2,4,6-trimethylpyridine. S. invicta exposed to Cd showed less sensitive electrophysiological and behavioral response to the three chemicals but exhibited sensitive perception to undecane. Silencing of SiOBP7 and SiOBP15 abolished the behavioral response of S. invicta to nonanal and undecane, respectively, suggesting that SiOBP7 and SiOBP15 play essential roles in the chemoreception of S. invicta. In general, our results suggest that Cd contamination may interfere with olfactory signal transduction by altering the expression of SiOBPs, consequently evoking chemosensory dysfunction in fire ants.


Subject(s)
Ants , Animals , Ants/chemistry , Ants/genetics , Cadmium/toxicity , Ecosystem
14.
iScience ; 25(7): 104664, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35811847

ABSTRACT

Attracting herbivores and their natural enemies is a standard method where plant volatiles mediate tritrophic interactions. However, it remains unknown whether the shared attraction has a shared chemosensory basis. Here we focus on the odorant-binding proteins (OBPs), a gene family integral to peripheral detection of odoriferous chemicals. Previous evidence suggests that the herbivorous beetle Monochamus alternatus and its parasitoid beetle Dastarcus helophoroides are attracted to stressed pines. In this study, (+)-fenchone, emitted by stressed pines, is found to be attracted to M. alternatus and D. helophoroides in behavioral assays. Meanwhile, two orthologous OBPs with a slower evolutionary rate, respectively, from the two insects are shown to bind with (+)-fenchone, and the attraction is abolished after RNAi. These results show the ability of evolutionarily conserved OBPs from herbivores and their enemies to detect the same plant volatiles, providing an olfactory mechanism of chemical signals-mediated tritrophic relationships.

15.
Insect Mol Biol ; 31(5): 568-584, 2022 10.
Article in English | MEDLINE | ID: mdl-35499809

ABSTRACT

Insects are highly reliant on their active olfactory system in which odorant binding proteins play a role to selectivity and sensitivity during odour perception and processing. This study sets out to determine whether and to which extent the antennal loaded SaveOBP10 in English grain aphid Sitobion avenae, contributes in olfactory processing during host selection. To understand this possible relationship, we purified the SaveOBP10 recombinant protein and performed fluorescence ligand binding tests, molecular docking, RNA interference (RNAi) and behavioural trials. The results showed that SaveOBP10 had strong binding affinities (Ki ≤5 µM) with most of wheat plant volatiles at pH 5.0 as compared to pH 7.4. In Y-tube olfactometer bioassays, the S. avenae was attracted behaviourally towards pentadecane, butylated hydroxytoluene, tetradecane and ß-caryophyllene however repelled by naphthalene. After RNAi of SaveOBP10, the aphid showed nonattraction towards ß-caryophyllene and nonsignificant behavioural response to pentadecane, butylated hydroxytoluene and tetradecane. Furthermore, the three-dimensional structure modelling and molecular docking of SaveOBP10 were performed to the volatiles with high binding abilities. Together these findings indicate that SaveOBP10 can bind more strongly to the volatiles that involved in S. avenae behaviour regulation and possibly will contribute effectively in S. avenae integrated pest management.


Subject(s)
Aphids , Animals , Aphids/genetics , Butylated Hydroxytoluene , Molecular Docking Simulation , Odorants , RNA Interference
16.
Toxins (Basel) ; 14(5)2022 05 04.
Article in English | MEDLINE | ID: mdl-35622574

ABSTRACT

Eichhornia crassipes were evaluated in order to investigate the insecticidal activity towards Aphis craccivora adults. The LC50 values were promising and reflected the bio-efficacy of the tested extracts (39 and 42 mg/L), respectively, and reduced the fecundity markedly. Using GC/MS analysis, the major components were n-hexadecanoic, linolenic, hexadecenoic, myristic, stearic acids, linolelaidic acid, methyl ester and some terpenoids, alkaloids, and hydrocarbons. A safety assessment of non-target organisms is essential for the development of new pesticides. In order to guide the rational use of the most potential insecticidal extracts AcF and EtF, the effect of these extracts on body weight, hematological indices, biochemical indicators, and histopathology of some relevant organs of albino rats (as a model for mammals) was investigated. The research outcomes revealed that the LC50 of AcF and EtF extracts had gradually raised body weight for 14 days (p > 0.05). Similarly, there were no remarkable alternations in the complete blood count (CBC); only a slight decrease in the monocytes count (612 ± 159.80 × 103 µL) in the EtF-treated group. There was a notable increase in alanine transferase (ALT) activity (36.73 ± 1.44 IU/L) in the AcF-treated group. No destructive changes were noted with the remaining biochemical parameters. Cholesterol and triglycerides non-significantly increased in the EtF group, whereas, cholesterol levels decreased significantly in the AcF group. In addition, histopathological examination reflected minor changes in AcF and EtF groups in the form of mild inflammation in the lungs and mild vacuolar degeneration in the kidneys, while no lesions were detected in the heart and liver in the same groups. Thus, the present research suggested that AcF and EtF extracts of E. crassipes are safe green insecticides for insect control strategies.


Subject(s)
Aphids , Eichhornia , Insecticides , Animals , Body Weight , Insecticides/toxicity , Mammals , Plant Extracts/chemistry , Plant Extracts/toxicity , Rats
17.
Sci Total Environ ; 815: 152840, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-34995605

ABSTRACT

Plant root-leaf communication signals are critical for plant defense. Numerous studies show that belowground organisms can alter systemically resistance traits in aboveground parts against herbivores. However, there are limited studies on root-knot nematode-aphid interaction. Moreover, the impact of nematode's initial density and infection time on plant defense is poorly understood. Here we aim to examine the induced defense responses by root-knot nematode Meloidogyne incognita against aboveground feeding aphid Sitobion avenae in wheat. Further, we investigated the influence of the nematode infection density as well as the length of infection in these interactions. We tested the direct and indirect defense responses triggered by M. incognita against S. avenae as well as how the responses affect the preference of Harmonia axyridis. Plant volatiles and hormones were determined to explore plant defense mechanisms that mediate aboveground-belowground defense. The photosynthetic rate was tested to examine plant tolerance strategy. We found that, both low and high densities M. incognita root infection at 7 days post inoculation (dpi) reduced the feeding of the aphid S. avenae. Behavioral assay showed that H. axyridis preferred plants co-damaged by both M. incognita and S. avenae at 7 dpi. M. incognita infection induced the changes of jasmonic acid, salicylic acid and volatile content, which mediated plant response to S. avenae. Furthermore, photosynthetic rate in wheat increased at 5 dpi under 300 M. incognita or 1000 M. incognita infection. These results suggest that plant roots induced multiple defense strategies against foliar herbivores as damages increased. Our study provides evidence of a complex dynamic response of wheat aboveground defense against aphids in response to belowground nematode damage on a temporal scale.


Subject(s)
Aphids , Tylenchoidea , Animals , Herbivory , Hormones , Triticum
18.
Int J Mol Sci ; 24(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36613830

ABSTRACT

Sex pheromone-binding proteins (PBPs) play an important role in sex pheromone recognition in Lepidoptera. However, the mechanisms of chemical communication mediating the response to sex pheromones remain unclear in the diurnal moths of the superfamily Zygaenoidea. In this study, Phauda flammans (Walker) (Lepidoptera: Zygaenoidea: Phaudidae) was used as a model insect to explore the molecular mechanism of sex pheromone perception in the superfamily Zygaenoidea. Two novel pheromone-binding proteins (PflaPBP1 and PflaPBP2) from P. flammans were identified. The two pheromone-binding proteins were predominantly expressed in the antennae of P. flammans male and female moths, in which PflaPBP1 had stronger binding affinity to the female sex pheromones Z-9-hexadecenal and (Z, Z, Z)-9, 12, 15-octadecatrienal, PflaPBP2 had stronger binding affinity only for (Z, Z, Z)-9, 12, 15-octadecatrienal, and no apparent binding affinity to Z-9-hexadecenal. The molecular docking results indicated that Ile 170 and Leu 169 are predicted to be important in the binding of the sex pheromone to PflaPBP1 and PflaPBP2. We concluded that PflaPBP1 and PflaPBP2 may be responsible for the recognition of two sex pheromone components and may function differently in female and male P. flammans. These results provide a foundation for the development of pest control by exploring sex pheromone blocking agents and the application of sex pheromones and their analogs for insect pests in the superfamily Zygaenoidea.


Subject(s)
Lepidoptera , Moths , Sex Attractants , Animals , Female , Male , Moths/physiology , Pheromones/metabolism , Sex Attractants/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Molecular Docking Simulation , Insect Proteins/metabolism
19.
Insect Sci ; 29(1): 162-176, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33822484

ABSTRACT

Chemosensory proteins (CSPs) have great contributions in performing diverse functions in insects. However, physiological appraisal of chemosensory protein genes still remains elusive in insects. We studied expression patterns and binding affinities of MsepCSP14, a chemosensory protein, in Mythimna separata. The distinct functions of MsepCSP14 were validated by employing different molecular techniques. The MsepCSP14 had high resemblance of sequence with chemosensory proteins of other insect family members. The MsepCSP14 expression was higher in antennal tissues of females than other tissues. Fluorescence binding assay validated that binding of nine out of 21 ligands to MsepCSP14 was higher at pH 7.4 than at pH 5.0. Three dimensional modeling (3D) and docking analysis predicted that amino acid residues of MsepCSP14 were involved in binding of compounds, and behavior assay displayed that adults of M. separata considerably responded to four volatiles from compounds demonstrating strong binding ability to MsepCSP14. Results of the present study suggest that MsepCSP14 is likely to mediate chemosensory functions in M. separata.


Subject(s)
Insect Proteins , Moths , Animals , Female
20.
Insect Biochem Mol Biol ; 140: 103677, 2022 01.
Article in English | MEDLINE | ID: mdl-34763091

ABSTRACT

Insect odorant-binding proteins (OBPs) are a class of small soluble proteins that can be found in various tissues wherein binding and transport of small molecules are required. Thus, OBPs are not only involved in typical olfactory function by specific activities with odorants but also participate in other physiological processes in non-chemosensory tissues. To better understand the complex biological functions of OBPs, it is necessary to study the transcriptional regulation of their expression patterns. In this paper, an apparent gradient expression pattern of Obp19, that was highly and specifically expressed in antennae and played an essential role in the detection of camphene, was defined in the antennae of the Japanese pine sawyer. Further, the transcription factor BarH1, that also presented gradient expression pattern in antennae, was found to regulate expression of Obp19 directly through binding to its upstream DNA sequence. The condition of BarH1 gene silence, the gene expression levels of Obp19 significantly decreased. At the same time, additional olfactory genes also were regulated and thus influence camphene reception. These findings provide us an opportunity to incorporate Obps in the gene regulatory networks of insects, which contribute to a better understanding of the multiplicity and diversity of OBPs and the olfactory mediated behaviors.


Subject(s)
Coleoptera , Olfactory Perception , Receptors, Odorant , Animals , Arthropod Antennae/metabolism , Coleoptera/genetics , Coleoptera/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Insecta/genetics , Insecta/metabolism , Olfactory Perception/genetics , Receptors, Odorant/metabolism , Smell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...