Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Food Microbiol ; 122: 104565, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839213

ABSTRACT

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Subject(s)
Acetic Acid , Diospyros , Fermentation , Microbiota , Acetic Acid/metabolism , Diospyros/microbiology , Diospyros/metabolism , Saccharomycetales/metabolism , Taste , Flavoring Agents/metabolism , Lactobacillus plantarum/metabolism , Food Microbiology , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/growth & development , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
2.
ACS Biomater Sci Eng ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822812

ABSTRACT

In the evolving field of drug discovery and development, multiorgans-on-a-chip and microphysiological systems are gaining popularity owing to their ability to emulate in vivo biological environments. Among the various gut-liver-on-a-chip systems for studying oral drug absorption, the chip developed in this study stands out with two distinct features: incorporation of perfluoropolyether (PFPE) to effectively mitigate drug sorption and a unique enterohepatic single-passage system, which simplifies the analysis of first-pass metabolism and oral bioavailability. By introducing a bolus drug injection into the liver compartment, hepatic extraction alone could be evaluated, further enhancing our estimation of intestinal availability. In a study on midazolam (MDZ), PFPE-based chips showed more than 20-times the appearance of intact MDZ in the liver compartment effluent compared to PDMS-based counterparts. Notably, saturation of hepatic metabolism at higher concentrations was confirmed by observations when the dose was reduced from 200 µM to 10 µM. This result was further emphasized when the metabolism was significantly inhibited by the coadministration of ketoconazole. Our chip, which is designed to minimize the dead volume between the gut and liver compartments, is adept at sensitively observing the saturation of metabolism and the effect of inhibitors. Using genome-edited CYP3A4/UGT1A1-expressing Caco-2 cells, the estimates for intestinal and hepatic availabilities were 0.96 and 0.82, respectively; these values are higher than the known human in vivo values. Although the metabolic activity in each compartment can be further improved, this gut-liver-on-a-chip can not only be used to evaluate oral bioavailability but also to carry out individual assessment of both intestinal and hepatic availability.

3.
Brain Inj ; : 1-13, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716911

ABSTRACT

BACKGROUND: Hyperlipidemia is a risk factor for stroke, and worsens neurological outcome after stroke. Endothelial progenitor cells (EPCs), which become dysfunctional in cerebral ischemia, hold capacity to promote revascularization. OBJECTIVE: We investigated the role of dyslipidemia in impairment of EPC-mediated angiogenesis in cerebral ischemic mice. METHODS AND RESULTS: The high fat diet (HFD)-fed mice following by ischemic stroke exhibited increased infarct volumes and neurological severity scores, and poorer angiogenesis. Bone marrow-EPCs treated with palmitic acid (PA) showed impaired functions and inhibited activity of AMP-activated protein kinase (AMPK). Notably, AMPK deficiency aggravated EPC dysfunction, further decreased mitochondrial membrane potential, and increased reactive oxygen species level in EPCs with PA treatment. Furthermore, the expression of fatty acid oxidation (FAO)-related genes was remarkably reduced, and carnitine palmitoyltransferase 1A (CPT1A) protein expression was downregulated in AMPK-deficient EPCs. AMPK deficiency aggravated neurological severity scores and angiogenesis in ischemic brain of HFD-fed mice, accompanied by suppressed protein level of CPT1A. EPC transplantation corrected impaired neurological severity scores and angiogenesis in AMPK-deficient mice. CONCLUSION: Our findings suggest that AMPK deficiency aggravates poor angiogenesis in ischemic brain by mediating FAO and oxidative stress thereby inducing EPC dysfunction in hyperlipidemic mice.

4.
BMC Surg ; 24(1): 154, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745320

ABSTRACT

BACKGROUND: Hemifacial spasm (HFS) is most effectively treated with microvascular decompression (MVD). However, there are certain challenges in performing MVD for HFS when the vertebral artery (VA) is involved in compressing the facial nerve (VA-involved). This study aimed to introduce a "bridge-layered" decompression technique for treating patients with VA-involved HFS and to evaluate its efficacy and safety to treat patients with HFS. METHODS: A single-center retrospective analysis was conducted on the clinical data of 62 patients with VA-involved HFS. The tortuous trunk of VA was lifted by a multi-point "bridge" decompression technique to avoid excessive traction of the cerebellum and reduce the risk of damage to the facial-acoustic nerve complex. To fully decompress all the responsible vessels, the branch vessels of VA were then isolated using the "layered" decompression technique. RESULTS: Among the 62 patients, 59 patients were cured immediately after the surgery, two patients were delayed cured after two months, and one had occasional facial muscle twitching after the surgery. Patients were followed up for an average of 19.5 months. The long-term follow-up results showed that all patients had no recurrence of HFS during the follow-up period, and no patients developed hearing loss, facial paralysis, or other permanent neurological damage complications. Only two patients developed tinnitus after the surgery. CONCLUSION: The "bridge-layered" decompression technique could effectively treat VA-involved HFS with satisfactory safety and a low risk of hearing loss. The technique could be used as a reference for decompression surgery for VA-involved HFS.


Subject(s)
Hemifacial Spasm , Microvascular Decompression Surgery , Vertebral Artery , Humans , Hemifacial Spasm/surgery , Female , Male , Middle Aged , Retrospective Studies , Vertebral Artery/surgery , Adult , Microvascular Decompression Surgery/methods , Treatment Outcome , Aged , Decompression, Surgical/methods , Follow-Up Studies
5.
Seizure ; 119: 28-35, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38772097

ABSTRACT

PURPOSE: This study aimed to explore seizure semiology and the effects of intracerebral electrical stimulation on the human posterior cingulate cortex (PCC) using Stereoelectroencephalography (SEEG) to deepen our comprehension of posterior cingulate epilepsy (PCE). METHODS: This study examined the characteristics of seizures through video documentation, by assessing the outcomes of intracranial electrical stimulation (iES) during SEEG. We further identified the connection between the observed semiology and precise anatomical locations within the PCC subregions where seizure onset zones (SOZ) were identified. RESULTS: Analysis was conducted on 59 seizures from 15 patients recorded via SEEG. Behavioural arrest emerged as the predominant manifestation across the PCC subregions. Where ictal activity extended to both the mesial and lateral temporal cortex, automatism was predominantly observed in seizures originating from the ventral PCC (vPCC). The retrosplenial cortex (RSC) is associated with complex motor behaviour, with seizure discharges spreading to the temporal lobe. Seizures originating from the PCC include axial tonic and autonomic seizures. Only one case of positive clinical seizures was documented. High frequencies of iES within the PCC induced various clinical responses, categorised as vestibular, visual, psychological, and autonomic, with vestibular reactions primarily occurring in the dorsal PCC (dPCC) and RSC, visual responses in the left RSC, and autonomic reactions in the vPCC and RSC. CONCLUSION: The manifestations of seizures in PCE vary according to the SOZ and the patterns of seizure propagation. The occurrence of seizures induced by iES is exceedingly rare, indicating that mapping of the PCC could pinpoint the primary sector of PCC.

6.
Comput Biol Med ; 177: 108611, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38788375

ABSTRACT

Utilizing functional magnetic resonance imaging (fMRI) to model functional brain networks (FBNs) is increasingly prominent in attention-deficit/hyperactivity disorder (ADHD) research, revealing neural impact and mechanisms through the exploration of activated brain regions. However, current FBNs-based methods face two major challenges. The primary challenge stems from the limitations of existing modeling methods in accurately capturing both regional correlations and long-distance dependencies (LDDs) within the dynamic brain, thereby affecting the diagnostic accuracy of FBNs as biomarkers. Additionally, limited sample size and class imbalance also pose a challenge to the learning performance of the model. To address the issues, we propose an automated diagnostic framework, which integrates modeling, multimodal fusion, and classification into a unified process. It aims to extract representative FBNs and efficiently incorporate domain knowledge to guide ADHD classification. Our work mainly includes three-fold: 1) A multi-head attention-based region-enhancement module (MAREM) is designed to simultaneously capture regional correlations and LDDs across the entire sequence of brain activity, which facilitates the construction of representative FBNs. 2) The multimodal supplementary learning module (MSLM) is proposed to integrate domain knowledge from phenotype data with FBNs from neuroimaging data, achieving information complementarity and alleviating the problems of insufficient medical data and unbalanced sample categories. 3) An ADHD automatic diagnosis framework guided by FBNs and domain knowledge (ADF-FAD) is proposed to help doctors make more accurate decisions, which is applied to the ADHD-200 dataset to confirm its effectiveness. The results indicate that the FBNs extracted by MAREM perform well in modeling and classification. After with MSLM, the model achieves accuracy of 92.4%, 74.4%, and 80% at NYU, PU, and KKI, respectively, demonstrating its ability to effectively capture crucial information related to ADHD diagnosis. Codes are available at https://github.com/zhuimengxuebao/ADF-FAD.

7.
Fish Shellfish Immunol ; 150: 109650, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788912

ABSTRACT

Nectins are adhesion molecules that play a crucial role in the organization of epithelial and endothelial junctions and function as receptors for the entry of herpes simplex virus. However, the role of Nectin4 remains poorly understood in fish. In this study, nectin4 gene was cloned from medaka (OlNectin4). OlNectin4 was located on chromosome 18 and contained 11 exons, with a total genome length of 25754 bp, coding sequences of 1689 bp, coding 562 amino acids and a molecular weight of 65.5 kDa. OlNectin4 contained four regions, including an Immunoglobulin region, an Immunoglobulin C-2 Type region, a Transmembrane region and a Coiled coil region. OlNectin4 shared 47.18 % and 25.00 % identity to Paralichthys olivaceus and Mus musculus, respectively. In adult medaka, the transcript of nectin4 was predominantly detected in gill. During red spotted grouper nervous necrosis virus (RGNNV) infection, overexpression of OlNectin4 in GE cells significantly increased viral gene transcriptions. Meanwhile, Two mutants named OlNectin4△4 (+4 bp) and OlNectin4△7 (-7 bp) medaka were established using CRISPR-Cas9 system. Nectin4-KO medaka had higher mortality than WT after infected with RGNNV. Moreover, the expression of RGNNV RNA2 gene in different tissues of the Nectin4-KO were higher than WT medaka after challenged with RGNNV. The brain and eye of Nectin4-KO medaka which RGNNV mainly enriched, exhibited significantly higher expression of interferon signaling genes than in WT. Taken together, the OlNectin4 plays a complex role against RGNNV infection by inducing interferon responses for viral clearance.

8.
Polymers (Basel) ; 16(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38794606

ABSTRACT

Self-powered electronic equipment has rapidly developed in the fields of sensing, motion monitoring, and energy collection, posing a greater challenge to triboelectric materials. Triboelectric materials need to enhance their electrical conductivity and mechanical strength to address the increasing demand for stability and to mitigate unpredictable physical damage. In this study, polyaniline-modified cellulose was prepared by means of in situ polymerization and compounded with polydimethylsiloxane, resulting in a triboelectric material with enhanced strength and conductivity. The material was fabricated into a tubular triboelectric nanogenerator (TENG) (G-TENG), and an electrocatalytic pretreatment of mixed office waste paper (MOW) pulp was performed using papermaking white water as the flowing liquid to improve the deinking performance. The electrical output performance of G-TENG is highest at a flow rate of 400 mL/min, producing a voltage of 22.76 V and a current of 1.024 µA. Moreover, the deinking effect of MOW was enhanced after the electrical pretreatment. This study explores the potential application of G-TENG as a self-powered sensor power supply and emphasizes its prospect as an energy collection device.

9.
Genome Biol ; 25(1): 102, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641822

ABSTRACT

BACKGROUND: Splicing factors are vital for the regulation of RNA splicing, but some have also been implicated in regulating transcription. The underlying molecular mechanisms of their involvement in transcriptional processes remain poorly understood. RESULTS: Here, we describe a direct role of splicing factor RBM22 in coordinating multiple steps of RNA Polymerase II (RNAPII) transcription in human cells. The RBM22 protein widely occupies the RNAPII-transcribed gene locus in the nucleus. Loss of RBM22 promotes RNAPII pause release, reduces elongation velocity, and provokes transcriptional readthrough genome-wide, coupled with production of transcripts containing sequences from downstream of the gene. RBM22 preferentially binds to the hyperphosphorylated, transcriptionally engaged RNAPII and coordinates its dynamics by regulating the homeostasis of the 7SK-P-TEFb complex and the association between RNAPII and SPT5 at the chromatin level. CONCLUSIONS: Our results uncover the multifaceted role of RBM22 in orchestrating the transcriptional program of RNAPII and provide evidence implicating a splicing factor in both RNAPII elongation kinetics and termination control.


Subject(s)
Positive Transcriptional Elongation Factor B , RNA Polymerase II , Humans , Chromatin , Positive Transcriptional Elongation Factor B/genetics , Positive Transcriptional Elongation Factor B/metabolism , RNA Polymerase II/metabolism , RNA Splicing , RNA Splicing Factors/genetics , Transcription, Genetic , Transcriptional Elongation Factors/genetics , Transcriptional Elongation Factors/metabolism
10.
Sci Total Environ ; 923: 171469, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38453061

ABSTRACT

With the development and utilization of marine resources, coastal water pollution has become increasingly prominent. The marine ecological compensation (MEC) is a key measure to balance the utilization of marine resources and the protection of marine environment. This paper attempts to explore the governance effect of MEC policy on coastal water pollution. Based on panel data of coastal cities in China from 2006 to 2020, a multiple period difference-in-differences (DID) model is used to estimate the impact of MEC policy on coastal water pollution. The research results show that the coastal water pollution has decreased significantly in the polit cities after implementing the MEC policy. The governance effect of MEC policy on coastal water pollution will last for three year and cover areas within a geographical distance of 200 km. The transmission mechanisms of MEC policy on coastal water pollution are the reduction of land-based sewage, marine technological progress and optimization of industrial structure. Further, this paper provides operational suggestions for strengthening the governance effect of MEC policy on coastal water pollution.

11.
Ther Adv Chronic Dis ; 15: 20406223241236258, 2024.
Article in English | MEDLINE | ID: mdl-38496233

ABSTRACT

Background: One-third of intractable epilepsy patients have no visually identifiable focus for neurosurgery based on imaging tests [magnetic resonance imaging (MRI)-negative cases]. Stereo-electroencephalography-guided radio-frequency thermocoagulation (SEEG-guided RF-TC) is utilized in the clinical treatment of epilepsy to lower the incidence of complications post-open surgery. Objective: This study aimed to identify prognostic factors and long-term seizure outcomes in SEEG-guided RF-TC for patients with MRI-negative epilepsy. Design: This was a single-center retrospective cohort study. Methods: We included 30 patients who had undergone SEEG-guided RF-TC at Sanbo Brain Hospital, Capital Medical University, from April 2015 to December 2019. The probability of remaining seizure-free and the plotted survival curves were analyzed. Prognostic factors were analyzed using log-rank tests in univariate analysis and the Cox regression model in multivariate analysis. Results: With a mean time of 31.07 ± 2.64 months (median 30.00, interquartile range: 18.00-40.00 months), 11 out of 30 patients (36.7%) were classified as International League Against Epilepsy class 1 in the last follow-up. The mean time of remaining seizure-free was 21.33 ± 4.55 months [95% confidence interval (CI) 12.41-30.25], and the median time was 3.00 ± 0.54 months (95% CI 1.94-4.06). Despite falling in the initial year, the probability of remaining seizure-free gradually stabilizes in the subsequent years. The patients were more likely to obtain seizure freedom when the epileptogenic zone was located in the insular lobe or with one focus on the limbic system (p = 0.034, hazard ratio 5.019, 95% CI 1.125-22.387). Conclusion: Our findings may be applied to guide individualized surgical interventions and help clinicians make better decisions.

12.
Phytomedicine ; 128: 155464, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38484625

ABSTRACT

BACKGROUND: Ang II induces hypertensive heart failure (HF) via hemodynamic and non-hemodynamic actions. Lycorine (LYC) is an alkaloid derived from Lycoris bulbs, and it possesses anti-cardiovascular disease-related activities. Herein, we explored the potential LYC-mediated regulation of Ang II-induced HF. METHODS: Over 4 weeks, we established a hypertensive HF mouse model by infusing Ang II into C57BL/6 mice using a micro-osmotic pump. For the final two weeks, mice were administered LYC via intraperitoneal injection. The LYC signaling network was then deduced using RNA sequencing. RESULTS: LYC administration strongly suppressed hypertrophy, myocardial fibrosis, and cardiac inflammation. As a result, it minimized heart dysfunction while causing no changes in blood pressure. The Nuclear Factor kappa B (NF-κB) network/phosphoinositol-3-kinase (PI3K)-protein kinase B (AKT) was found to be a major modulator of LYC-based cardioprotection using RNA sequencing study. We further confirmed that in cultured cardiomyocytes and mouse hearts, LYC reduced the inflammatory response and downregulated the Ang II-induced PI3K-AKT/NF-κB network. Moreover, PI3K-AKT or NF-κB axis depletion in cardiomyocytes completely abrogated the anti-inflammatory activities of LYC. CONCLUSION: Herein, we demonstrated that LYC safeguarded hearts in Ang II -stimulated mice by suppressing the PI3K-AKT/NF-κB-induced inflammatory responses. Given the evidence mentioned above, LYC is a robust therapeutic agent for hypertensive HF.


Subject(s)
Amaryllidaceae Alkaloids , Angiotensin II , Mice, Inbred C57BL , NF-kappa B , Phenanthridines , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Amaryllidaceae Alkaloids/pharmacology , NF-kappa B/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phenanthridines/pharmacology , Male , Signal Transduction/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Mice , Heart Failure/drug therapy , Ventricular Remodeling/drug effects , Inflammation/drug therapy , Myocytes, Cardiac/drug effects , Hypertension/drug therapy , Hypertension/chemically induced , Disease Models, Animal , Lycoris/chemistry , Myocardium
13.
Diabetes ; 73(5): 780-796, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38394639

ABSTRACT

Increasing evidence implicates chronic inflammation as the main pathological cause of diabetic nephropathy (DN). Exploration of key targets in the inflammatory pathway may provide new treatment options for DN. We aimed to investigate the role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP2) in macrophages and its association with DN. The upregulated phosphorylation of SHP2 was detected in macrophages in both patients with diabetes and in a mouse model. Using macrophage-specific SHP2-knockout (SHP2-MKO) mice and SHP2fl/fl mice injected with streptozotocin (STZ), we showed that SHP2-MKO significantly attenuated renal dysfunction, collagen deposition, fibrosis, and inflammatory response in mice with STZ-induced diabetes. RNA-sequencing analysis using primary mouse peritoneal macrophages (MPMs) showed that SHP2 deletion mainly affected mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signaling pathways as well as MAPK/NF-κB-dependent inflammatory cytokine release in MPMs. Further study indicated that SHP2-deficient macrophages failed to release cytokines that induce phenotypic transition and fibrosis in renal cells. Administration with a pharmacological SHP2 inhibitor, SHP099, remarkably protected kidneys in both type 1 and type 2 diabetic mice. In conclusion, these results identify macrophage SHP2 as a new accelerator of DN and suggest that SHP2 inhibition may be a therapeutic option for patients with DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Protein Tyrosine Phosphatase, Non-Receptor Type 11 , Animals , Humans , Mice , Cytokines/metabolism , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Fibrosis , Inflammation/pathology , Macrophages/metabolism , Mice, Knockout , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism
14.
Zhongguo Zhong Yao Za Zhi ; 49(1): 216-223, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38403354

ABSTRACT

This study aims to investigate the effect of Buyang Huanwu Decoction on blood flow recovery and arteriogenesis after hindlimb ischemia in mice via the platelet-derived growth factor(PDGF) signaling pathway. Forty C57BL/6 mice were randomized into model(clean water, 10 mL·kg~(-1)·d~(-1)), beraprost sodium(positive control, 18 µg·kg~(-1)·d~(-1)), and low-, medium-, and high-dose(10, 20, and 40 g·kg~(-1)·d~(-1), respectively) Buyang Huanwu Decoction groups(n=8). The hindlimb ischemia model was established by femoral artery ligation. The mice were administrated with corresponding agents by gavage daily for 14 days after ligation. For laser Doppler perfusion imaging, the mice were anesthetized and measured under a Periscan PSI imager. The density of capillary and arterio-le in the ischemic gastrocnemius was measured using immunofluorescence staining of the frozen tissue sections. Western blot was employed to determine the expression of PDGF subunit B(PDGFB), phosphorylated mitogen extracellular kinase(p-MEK), MEK, phosphorylated extracellular signal-regulated kinase(p-ERK), and ERK. Real-time PCR was employed to determine the mRNA level of PDGFB. The Buyang Huanwu Decoction-containing serum was used to treat the vascular smooth muscle cells(VSMCs) in hypoxia at doses of 10% and 20%. The proliferation and migration of VSMCs was assessed in vitro. The results showed that compared with the model group, beraprost sodium and Buyang Huanwu Decoction enhanced the blood flow recovery, increased the capillary and arteriole density, and up-regulated the protein levels of PDGFB, p-MEK, p-ERK, and mRNA levels of PDGFB, with the medium-dose Buyang Huanwu Decoction demonstrating the most significant effect. The 10% Buyang Huanwu Decoction-containing serum enhanced the proliferation and migration of VSMCs. Our findings demonstrate that Buyang Huanwu Decoction up-regulates PDGFB transcription and activates PDGF signaling pathway to promote arteriogenesis and blood flow recovery in ischemic gastrocnemius.


Subject(s)
Drugs, Chinese Herbal , Rats , Mice , Animals , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-sis , Mice, Inbred C57BL , Drugs, Chinese Herbal/therapeutic use , Signal Transduction , Ischemia/drug therapy , Hindlimb/metabolism , RNA, Messenger/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism
15.
Sci Adv ; 10(7): eadk1721, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363834

ABSTRACT

Characterizing the tumor microenvironment at the molecular level is essential for understanding the mechanisms of tumorigenesis and evolution. However, the specificity of the blood proteome in localized region of the tumor and its linkages with other systems is difficult to investigate. Here, we propose a spatially multidimensional comparative proteomics strategy using glioma as an example. The blood proteome signature of tumor microenvironment was specifically identified by in situ collection of arterial and venous blood from the glioma region of the brain for comparison with peripheral blood. Also, by integrating with different dimensions of tissue and peripheral blood proteomics, the information on the genesis, migration, and exchange of glioma-associated proteins was revealed, which provided a powerful method for tumor mechanism research and biomarker discovery. The study recruited multidimensional clinical cohorts, allowing the proteomic results to corroborate each other, reliably revealing biological processes specific to gliomas, and identifying highly accurate biomarkers.


Subject(s)
Brain Neoplasms , Glioma , Humans , Proteomics/methods , Brain Neoplasms/pathology , Proteome/metabolism , Glioma/pathology , Biomarkers , Tumor Microenvironment
17.
Cell Mol Life Sci ; 81(1): 18, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38195959

ABSTRACT

Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.


Subject(s)
Heart Failure , Myocytes, Cardiac , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Cardiomegaly/chemically induced , Fibrosis , Heart Failure/chemically induced , Isoproterenol/pharmacology , Ventricular Remodeling
18.
Anal Chim Acta ; 1290: 342223, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38246740

ABSTRACT

Photodeposited TiO2/Ag nanocomposites were generally used to be a friendly catalyst for degrading organic contaminant in environmental field. However, electrochemiluminescence (ECL) sensing analysis based on photocatalysts remains a significant challenge. Herein, polyvinylimide (PEI)-TiO2/Ag nanocomposites (PEI-TiO2/AgNCPs) film with reduced graphene oxide(r-GO) was constructed as a sensing interface for copper(II) ECL detection. TiO2/Ag nanocomposites was prepared by reversed phase microemulsion method and photodeposition technique. Moreover, it was discovered that a small amount of Cu2+ could obviously boost the ECL signal of ninhydrin-hydrogen peroxide system. Signal amplification was achieved by using the synergistic effect between r-GO and TiO2/Ag nanocomposites, and the efficiently concentrated effect of PEI to Cu2+. Furthermore, the investigation showed that ECL mechanism of ninhydrin-hydrogen peroxide system was attributed to the generated hydroxyl radical and superoxide anion during the several type of reactions. Thus for the first time, an ultrasensitive ECL approach for detecting Cu2+ could be performed using ninhydrin as an ECL signal probe and hydrogen peroxide as a co-reaction reagent. Under the suitable circumstances, the proposed method showed an excellent linear relationship in the concentration range of Cu2+ from 1.0 fM to 5.0 nM. Detection limit was estimated to be as low as 0.26 fM. The sensing interface expanded the application of photodeposited TiO2/Ag nanocomposites in ultrasensitive ECL detection. It has potential applications in other components and biological analysis.

19.
Biochim Biophys Acta Mol Basis Dis ; 1870(3): 167018, 2024 03.
Article in English | MEDLINE | ID: mdl-38185350

ABSTRACT

Heart failure represents a major cause of death worldwide. Recent research has emphasized the potential role of protein ubiquitination/deubiquitination protein modification in cardiac pathology. Here, we investigate the role of the ovarian tumor deubiquitinase 1 (OTUD1) in isoprenaline (ISO)- and myocardial infarction (MI)-induced heart failure and its molecular mechanism. OTUD1 protein levels were raised markedly in murine cardiomyocytes after MI and ISO treatment. OTUD1 deficiency attenuated myocardial hypertrophy and cardiac dysfunction induced by ISO infusion or MI operation. In vitro, OTUD1 knockdown in neonatal rat ventricular myocytes (NRVMs) attenuated ISO-induced injuries, while OTUD1 overexpression aggravated the pathological changes. Mechanistically, LC-MS/MS and Co-IP studies showed that OTUD1 bound directly to the GAF1 and PDEase domains of PDE5A. OTUD1 was found to reverse K48 ubiquitin chain in PDE5A through cysteine at position 320 of OTUD1, preventing its proteasomal degradation. PDE5A could inactivates the cGMP-PKG-SERCA2a signaling axis which dysregulate the calcium handling in cardiomyocytes, and leading to the cardiomyocyte injuries. In conclusion, OTUD1 promotes heart failure by deubiquitinating and stabilizing PDE5A in cardiomyocytes. These findings have identified PDE5A as a new target of OTUD1 and emphasize the potential of OTUD1 as a target for treating heart failure.


Subject(s)
Heart Failure , Myocardial Infarction , Mice , Rats , Animals , Isoproterenol/pharmacology , Myocytes, Cardiac/metabolism , Chromatography, Liquid , Tandem Mass Spectrometry , Heart Failure/metabolism , Myocardial Infarction/metabolism
20.
Acta Pharmacol Sin ; 45(4): 765-776, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38110583

ABSTRACT

Hypertensive renal disease (HRD) contributes to the progression of kidney dysfunction and ultimately leads to end-stage renal disease. Understanding the mechanisms underlying HRD is critical for the development of therapeutic strategies. Deubiquitinating enzymes (DUBs) have been recently highlighted in renal pathophysiology. In this study, we investigated the role of a DUB, OTU Domain-Containing Protein 1 (OTUD1), in HRD models. HRD was induced in wild-type or Otud1 knockout mice by chronic infusion of angiotensin II (Ang II, 1 µg/kg per min) through a micro-osmotic pump for 4 weeks. We found that OTUD1 expression levels were significantly elevated in the kidney tissues of Ang II-treated mice. Otud1 knockout significantly ameliorated Ang II-induced HRD, whereas OTUD1 overexpression exacerbated Ang II-induced kidney damage and fibrosis. Similar results were observed in TCMK-1 cells but not in SV40 MES-13 cells following Ang II (1 µM) treatment. In Ang II-challenged TCMK-1 cells, we demonstrated that OTUD1 bound to CDK9 and induced CDK9 deubiquitination: OTUD1 catalyzed K63 deubiquitination on CDK9 with its Cys320 playing a critical role, promoting CDK9 phosphorylation and activation to induce inflammatory responses and fibrosis in kidney epithelial cells. Administration of a CDK9 inhibitor NVP-2 significantly ameliorated Ang II-induced HRD in mice. This study demonstrates that OTUD1 mediates HRD by targeting CDK9 in kidney epithelial cells, suggesting OTUD1 is a potential target in treating this disease.


Subject(s)
Hypertension, Renal , Kidney , Nephritis , Ubiquitin-Specific Proteases , Animals , Mice , Angiotensin II/metabolism , Epithelial Cells/metabolism , Fibrosis , Hypertension, Renal/enzymology , Hypertension, Renal/pathology , Kidney/pathology , Mice, Inbred C57BL , Mice, Knockout , Nephritis/enzymology , Nephritis/pathology , Ubiquitin-Specific Proteases/metabolism , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...