Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 175
Filter
1.
Int J Antimicrob Agents ; : 107237, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38851461

ABSTRACT

The co-production of KPC and NDM carbapenemases in carbapenem-resistant Klebsiella pneumoniae (CRKP) complicates clinical treatment and increases mortality rates. The emergence of KPC-NDM CRKP is believed to result from acquiring an NDM plasmid by KPC-CRKP, especially under the selective pressure of ceftazidime-avibactam (CZA). In this study, a CRKP-producing KPC-2 (JNP990) was isolated from a patient at a tertiary hospital in Shandong Province. Following sulfamethoxazole-trimethoprim (SXT) treatment, the isolate evolved into a strain that co-produces KPC and NDM (JNP989), accompanied by resistance to SXT (MIC>2/38 µg/mL) and CZA (dd≤14 mm). Whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) revealed that JNP989 acquired an IncC plasmid (NDM plasmid) spanning 197kb carrying sul1 and blaNDM-1 genes. The NDM plasmid could be successfully transferred into E. coli J53 at a conjugation frequency of (8.70±2.47) × 10-4. The IncFⅡ/IncR plasmid carrying the blaKPC-2 gene in JNP990 could only be transferred in the presence of the NDM plasmid at a conjugation frequency of (1.93±0.41) × 10-5. Five CRKP strains with the same resistance pattern as JNP989 were isolated from other patients in the same hospital, belonging to the same clone as JNP989, with a sequence type of ST11. Two strains lost resistance to CZA due to the loss of blaNDM-1-carrying fragment mediated by insertion sequence 26. Plasmid stability testing indicated that the IncC plasmid was more stable than the blaNDM-1 genes in the hosts. Our study describes the evolution of KPC-NDM-CRKP and its spread in hospitalized patients following antibiotic treatment, highlighting the severity of the current resistance spread.

2.
Int J Biol Macromol ; 272(Pt 2): 132876, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838887

ABSTRACT

The objective of this study is to evaluate the in vitro and in vivo degradation profile and biocompatibility of poly-L-lactic acid (PLLA) porous microspheres (PMs) for their potential application as injectable microcarrier or micro-scaffolds materials in the research and clinical use of craniofacial cartilage repair. In this study, PLLA PMs prepared exhibited spherical shape and uniform surface pores followed by 24-week evaluations for degradation behavior and biocompatibility. In vitro degradation analysis encompassed morphological examination, pH monitoring, molecular weight analysis, thermodynamic assessment, and chemical structure analysis. After 12 weeks of in vitro degradation, PMs maintained a regular porous spherical structure. Molecular weight and glass transition temperature of PLLA PMs decreased over time, accompanying with an initial increase and subsequent decrease in crystallinity. Enzymatic degradation caused morphological changes and accelerated degradation in the in vitro studies. Finally, in vivo evaluations involved subcutaneous implantation of PLLA PMs in rats, demonstrating biocompatibility by enhancing type I and type III collagen regeneration as observed in histological analysis. The results demonstrated that PLLA PMs were able to maintain their spherical structure for 12 weeks, promoting the generation of collagen at the implantation site, meeting the time requirements for craniofacial cartilage repair.

3.
Epilepsy Behav Rep ; 27: 100676, 2024.
Article in English | MEDLINE | ID: mdl-38826153

ABSTRACT

Although several previous studies have used resting-state functional magnetic resonance imaging and diffusion tensor imaging to report topological changes in the brain in epilepsy, it remains unclear whether the individual structural covariance network (SCN) changes in epilepsy, especially in pediatric epilepsy with visual cortex resection but with normal functions. Herein, individual SCNs were mapped and analyzed for seven pediatric patients with epilepsy after surgery and 15 age-matched healthy controls. A whole-brain individual SCN was constructed based on an automated anatomical labeling template, and global and nodal network metrics were calculated for statistical analyses. Small-world properties were exhibited by pediatric patients after brain surgery and by healthy controls. After brain surgery, pediatric patients with epilepsy exhibited a higher shortest path length, lower global efficiency, and higher nodal efficiency in the cuneus than those in healthy controls. These results revealed that pediatric epilepsy after brain surgery, even with normal functions, showed altered topological organization of the individual SCNs, which revealed residual network topological abnormalities and may provide initial evidence for the underlying functional impairments in the brain of pediatric patients with epilepsy after surgery that can occur in the future.

4.
JAMA Netw Open ; 7(5): e2413708, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38809553

ABSTRACT

Importance: Helicobacter pylori treatment and nutrition supplementation may protect against gastric cancer (GC), but whether the beneficial effects only apply to potential genetic subgroups and whether high genetic risk may be counteracted by these chemoprevention strategies remains unknown. Objective: To examine genetic variants associated with the progression of gastric lesions and GC risk and to assess the benefits of H pylori treatment and nutrition supplementation by levels of genetic risk. Design, Setting, and Participants: This cohort study used follow-up data of the Shandong Intervention Trial (SIT, 1989-2022) and China Kadoorie Biobank (CKB, 2004-2018) in China. Based on the SIT, a longitudinal genome-wide association study was conducted to identify genetic variants for gastric lesion progression. Significant variants were examined for incident GC in a randomly sampled set of CKB participants (set 1). Polygenic risk scores (PRSs) combining independent variants were assessed for GC risk in the remaining CKB participants (set 2) and in an independent case-control study in Linqu. Exposures: H pylori treatment and nutrition supplementation. Main Outcomes and Measures: Primary outcomes were the progression of gastric lesions (in SIT only) and the risk of GC. The associations of H pylori treatment and nutrition supplementation with GC were evaluated among SIT participants with different levels of genetic risk. Results: Our analyses included 2816 participants (mean [SD] age, 46.95 [9.12] years; 1429 [50.75%] women) in SIT and 100 228 participants (mean [SD] age, 53.69 [11.00] years; 57 357 [57.23%] women) in CKB, with 147 GC cases in SIT and 825 GC cases in CKB identified during follow-up. A PRS integrating 12 genomic loci associated with gastric lesion progression and incident GC risk was derived, which was associated with GC risk in CKB (highest vs lowest decile of PRS: hazard ratio [HR], 2.54; 95% CI, 1.80-3.57) and further validated in the analysis of 702 case participants and 692 control participants (mean [SD] age, 54.54 [7.66] years; 527 [37.80%] women; odds ratio, 1.83; 95% CI, 1.11-3.05). H pylori treatment was associated with reduced GC risk only for individuals with high genetic risk (top 25% of PRS: HR, 0.45; 95% CI, 0.25-0.82) but not for those with low genetic risk (HR, 0.81; 95% CI, 0.50-1.34; P for interaction = .03). Such effect modification was not found for vitamin (P for interaction = .93) or garlic (P for interaction = .41) supplementation. Conclusions and Relevance: The findings of this cohort study indicate that a high genetic risk of GC may be counteracted by H pylori treatment, suggesting primary prevention could be tailored to genetic risk for more effective prevention.


Subject(s)
Genetic Predisposition to Disease , Helicobacter Infections , Helicobacter pylori , Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/epidemiology , Female , Male , Middle Aged , Helicobacter Infections/drug therapy , Helicobacter Infections/complications , China/epidemiology , Genome-Wide Association Study , Case-Control Studies , Adult , Risk Factors , Dietary Supplements , Cohort Studies , Aged , Anti-Bacterial Agents/therapeutic use
5.
Bioorg Chem ; 147: 107396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705108

ABSTRACT

RN-9893, a TRPV4 antagonist identified by Renovis Inc., showcased notable inhibition of TRPV4 channels. This research involved synthesizing and evaluating three series of RN-9893 analogues for their TRPV4 inhibitory efficacy. Notably, compounds 1b and 1f displayed a 2.9 to 4.5-fold increase in inhibitory potency against TRPV4 (IC50 = 0.71 ± 0.21 µM and 0.46 ± 0.08 µM, respectively) in vitro, in comparison to RN-9893 (IC50 = 2.07 ± 0.90 µM). Both compounds also significantly outperformed RN-9893 in TRPV4 current inhibition rates (87.6 % and 83.2 % at 10 µM, against RN-9893's 49.4 %). For the first time, these RN-9893 analogues were profiled in an in vivo mouse model, where intraperitoneal injections of 1b or 1f at 10 mg/kg notably mitigated symptoms of acute lung injury induced by lipopolysaccharide (LPS). These outcomes indicate that compounds 1b and 1f are promising candidates for acute lung injury treatment.


Subject(s)
Acute Lung Injury , Benzenesulfonamides , Sulfonamides , TRPV Cation Channels , Structure-Activity Relationship , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism , Acute Lung Injury/drug therapy , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Animals , Mice , Humans , Molecular Structure , Dose-Response Relationship, Drug , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Male , Mice, Inbred C57BL
6.
Molecules ; 29(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731458

ABSTRACT

Utilizing hydrogen as a viable substitute for fossil fuels requires the exploration of hydrogen storage materials with high capacity, high quality, and effective reversibility at room temperature. In this study, the stability and capacity for hydrogen storage in the Sc-modified C3N4 nanotube are thoroughly examined through the application of density functional theory (DFT). Our finding indicates that a strong coupling between the Sc-3d orbitals and N-2p orbitals stabilizes the Sc-modified C3N4 nanotube at a high temperature (500 K), and the high migration barrier (5.10 eV) between adjacent Sc atoms prevents the creation of metal clusters. Particularly, it has been found that each Sc-modified C3N4 nanotube is capable of adsorbing up to nine H2 molecules, and the gravimetric hydrogen storage density is calculated to be 7.29 wt%. It reveals an average adsorption energy of -0.20 eV, with an estimated average desorption temperature of 258 K. This shows that a Sc-modified C3N4 nanotube can store hydrogen at low temperatures and harness it at room temperature, which will reduce energy consumption and protect the system from high desorption temperatures. Moreover, charge donation and reverse transfer from the Sc-3d orbital to the H-1s orbital suggest the presence of the Kubas effect between the Sc-modified C3N4 nanotube and H2 molecules. We draw the conclusion that a Sc-modified C3N4 nanotube exhibits exceptional potential as a stable and efficient hydrogen storage substrate.

7.
Transl Oncol ; 45: 101990, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735270

ABSTRACT

BACKGROUND: With regard to head and neck squamous cell carcinoma (HNSCC), its occurrence and advancement are controlled by genetic and epigenetic anomalies. PIWI-interacting RNAs (piRNAs) are recognized with significance in tumor, but the precise molecular mechanisms of piRNAs in HNSCC largely remain undisclosed. METHODS: Differentially expressed piRNAs were identified by RNA sequencing. The expression of piR-hsa-23533 was evaluated using quantitative real-time PCR and RNA in situ hybridization. The impacts of piR-hsa-23533 on the proliferation and apoptosis of HNSCC cells were investigated by a series of in vitro and in vivo assays. RESULTS: piR-hsa-23533 exhibits upregulation within HNSCC cells and tissues. Besides, piR-hsa-23533 overexpression promotes proliferation while inhibiting apoptosis in vitro and in vivo, while piR-hsa-23533 silencing has an opposite function. From the mechanistic perspective, piR-hsa-23533 can bind to Ubiquitin-specific protease 7 (USP7), as shown through RNA pull-down and RNA immunoprecipitation assays, promoting USP7 mRNA and protein expression. CONCLUSIONS: These findings highlight the functional importance of piR-hsa-23533 in HNSCC and may assist in the development of anti-HNSCC therapeutic target.

8.
J Colloid Interface Sci ; 669: 944-951, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38759593

ABSTRACT

Understanding the structure-function relationships encoded on chiral catalysts is important for investigating the fundamental principles of catalytic enantioselectivity. Herein, the synthesis and self-assembly of naphthalene substituted bis-l/d-histidine amphiphiles (bis-l/d-NapHis) in DMF/water solution mixture is reported. The resulting supramolecular assemblies featuring well-defined P/M nanoribbons (NRs). With combination of the (P/M)-NR and metal ion catalytic centers (Mn+ = Co2+, Cu2+, Fe3+), the (P)-NR-Mn+ as chiral supramolecular catalysts show catalytic preference to 3,4-dihydroxy-S-phenylalanine (S-DOPA) oxidation while the (M)-NR-Mn+ show enantioselective bias to R-DOPA oxidation. In contrast, their monomeric counterparts bis-l/d-NapHis-Mn+ display an inverse and dramatically lower catalytic selectivity in the R/S-DOPA oxidation. Among them, the Co2+-coordinated supramolecular nanostructures show the highest catalytic efficiency and enantioselectivity (select factor up to 2.70), while the Fe3+-coordinated monomeric ones show nearly racemic products. Analysis of the kinetic results suggests that the synergistic effect between metal ions and the chiral supramolecular NRs can significantly regulate the enantioselective catalytic activity, while the metal ion-mediated monomeric bis-l/d-NapHis were less active. The studies on association constants and activation energies reveal the difference in catalytic efficiency and enantioselectivity resulting from the different energy barriers and binding affinities existed between the chiral molecular/supramolecular structures and R/S-DOPA enantiomers. This work clarifies the correlation between chiral molecular/supramolecular structures and enantioselective catalytic activity, shedding new light on the rational design of chiral catalysts with outstanding enantioselectivity.

9.
J Nat Prod ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38785214

ABSTRACT

Bioactivity-based molecular networking-guided fractionation enabled the isolation of three new polycyclic tetramic acids bearing cis-decalin, epicolidines A-C (1-3), along with one known compound, PF 1052 (4), from the endophytic fungus Epicoccum sp. 1-042 collected in Tibet, China. Their structures were assigned on the basis of extensive spectroscopic data, partial hydrolysis, advanced Marfey's method, quantum chemistry calculations, and X-ray diffraction analysis. Compounds 2-4 displayed promising activities against Gram-positive bacteria in vitro. Particularly, compound 4 displayed remarkable potential against vancomycin-resistant Enterococcus faecium (VRE) with an MIC value of 0.25 µg/mL, lower than the MIC (0.5 µg/mL) of the antibiotic combination quinupristin/dalfopristin (Q/D). In a further in vivo study, compound 4 increased the survival rate to 100% in the VRE-G. mellonella infection model at a concentration of 10 mg/kg.

11.
Angew Chem Int Ed Engl ; : e202405382, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682252

ABSTRACT

Isotactic polythioesters (PTEs) that are thioester analogs to natural polyhydroxyalkanoates (PHAs) have attracted growing attention due to their distinct properties. However, the development of chemically synthetic methods for preparing isotactic PTEs has long been an intricate endeavour. Herein, we report the successful synthesis of perfectly isotactic PTEs via stereocontrolled ring-opening polymerization. This binaphthalene-salen aluminium (SalBinam-Al) catalyst promoted a robust polymerization of rac-α-substituted-ß-propiothiolactones (rac-BTL and rac-PTL) with highly kinetic resolution, affording perfectly isotactic P(BTL) and P(PTL) with Mn up to 276 kDa. Impressively, the isotactic P(BTL) formed a supramolecular stereocomplex with improved thermal property (Tm=204 °C). Ultimately, this kinetic resolution polymerization enabled the facile isolation of enantiopure (S)-BTL, which could efficiently convert to an important pharmaceutical building block (S)-2-benzyl-3-mercapto-propanoic acid. Isotactic P(PTL) served as a tough and ductile material comparable to the commercialized polyolefins. This synthetic system allowed to access of isotactic PTEs, establishing a powerful platform for the discovery of sustainable plastics.

12.
Int Dent J ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38688802

ABSTRACT

INTRODUCTION AND AIMS: Periodontitis, a chronic inflammatory condition affecting the supporting structures of the teeth, is a substantial public health burrden whilst impacting the life quality of those affected. Elevated levels of systemic immune-inflammation index (SII) and systemic inflammation response index (SIRI) have been implicated in various inflammatory conditions. This study aimed to investigate the relationship between SII and SIRI with periodontitis. METHODS: The study examined a total of 8666 participants in the 2009 to 2014 National Health and Nutrition Examination Survey (NHANES). The study compared the weighted prevalence of periodontitis among various groups. The association between SII, SIRI levels, and periodontitis was analyzed using binary logistic regression. Additionally, we explored nonlinear relationships between SII, SIRI, and the prevalence of periodontitis using restricted cubic spline (RCS) plots. RESULTS: Among participants in the fourth quartile (Q4) of SII and SIRI, the highest prevalence of periodontitis was observed, with rates of 44.87% and 48.41%, respectively. After adjusting for all covariates, the odds ratio (OR) for periodontitis associated with SII Q4 was 1.19 (95% CI 1.02, 1.39, P = .03), while for SIRI Q4, it was 1.18 (95% CI 1.01, 1.39, P = .04). In addition, the results of sensitivity analysis revealed consistent findings, indicating that after adjusting for all covariates, the OR for periodontitis associated with SII Q4 and SIRI Q4 remained statistically significant. Specifically, the OR for periodontitis associated with SII Q4 was 1.19 (95% CI 1.02, 1.39, P = .03), while for SIRI Q4, it was 1.19 (95% CI 1.01, 1.40, P = .04). CONCLUSIONS: These results indicate that elevated SII and SIRI levels are associated with an increased prevalence of periodontitis. CLINICAL RELEVANCE: These findings suggest a potential connection between systemic inflammation and periodontitis, highlighting the importance of periodontitis patients being aware of their systemic diseases that are inflammatory in nature such as chronic cardiovascular afflictions.

13.
Article in English | MEDLINE | ID: mdl-38489114

ABSTRACT

To find out the differentially expressed small nucleolar RNAs (snoRNAs) in corneal neovascularization and their effect on angiogenesis. The rat model of corneal neovascularization induced by alkali burn was established, and the differentially expressed snoRNAs were sifted by high-throughput sequencing. Human genome homologs were screened and verified in cytopathological models. Polymerase chain reactions (PCRs) and Western blot assays were applied to detect mRNA and corresponding proteins affected by the differentially expressed snoRNA. In vitro, experiments were promoted to identify whether snoRNA affects endothelial cell migration and angiogenesis. Forty-seven differentially expressed snoRNAs were sifted from transparent cornea and neovascularization. According to sequencing and cytopathological model results, SNORD45A was selected for subsequent experiments. At mRNA and protein levels, SNORD45A affected the expression of HIF-1α. SNORD45A promoted endothelial angiogenesis through endothelial cell migration and tube formation regulation. The research suggested that SNORD45A partakes in the corneal neovascularization formation and can become one of the targets for corneal neovascularization therapy.

14.
Eur J Med Chem ; 268: 116280, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38458109

ABSTRACT

The sustained loss of HBsAg is considered a pivotal indicator for achieving functional cure of HBV. Dihydroquinolizinone derivatives (DHQs) have demonstrated remarkable inhibitory activity against HBsAg both in vitro and in vivo. However, the reported neurotoxicity associated with RG7834 has raised concerns regarding the development of DHQs. In this study, we designed and synthesized a series of DHQs incorporating nitrogen heterocycle moieties. Almost all of these compounds exhibited potent inhibition activity against HBsAg, with IC50 values at the nanomolar level. Impressively, the compound (S)-2a (10 µM) demonstrated a comparatively reduced impact on the neurite outgrowth of HT22 cells and isolated mouse DRG neurons in comparison to RG7834, thereby indicating a decrease in neurotoxicity. Furthermore, (S)-2a exhibited higher drug exposures than RG7834. The potent anti-HBV activity, reduced neurotoxicity, and favorable pharmacokinetic profiles underscore its promising potential as a lead compound for future anti-HBV drug discovery.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B virus , Animals , Mice , Antiviral Agents/pharmacology , Zidovudine
15.
Front Immunol ; 15: 1392734, 2024.
Article in English | MEDLINE | ID: mdl-38515740

ABSTRACT

[This corrects the article DOI: 10.3389/fimmu.2024.1258740.].

16.
Genes (Basel) ; 15(3)2024 03 03.
Article in English | MEDLINE | ID: mdl-38540388

ABSTRACT

Styphnolobium japonicum L. is a commonly consumed plant in China, known for its medicinal and nutritional benefits. This study focuses on the medicinal properties influenced by flavonoid metabolites, which vary during flower development. Utilizing full-length transcriptome sequencing on S. japonicum flowers, we observed changes in gene expression levels as the flowers progressed through growth stages. During stages S1 and S2, key genes related to flavonoid synthesis (PAL, 4CL, CHS, F3H, etc.) exhibited heightened expression. A weighted gene co-expression network analysis (WGCNA) identified regulatory genes (MYB, bHLH, WRKY) potentially involved in the regulatory network with flavonoid biosynthesis-related genes. Our findings propose a regulatory mechanism for flavonoid synthesis in S. japonicum flowers, elucidating the genetic underpinnings of this process. The identified candidate genes present opportunities for genetic enhancements in S. japonicum, offering insights into potential applications for improving its medicinal attributes.


Subject(s)
Sophora japonica , Transcriptome , Transcriptome/genetics , Gene Expression Profiling , Flavonoids , Flowers
17.
Chem Biodivers ; 21(5): e202400300, 2024 May.
Article in English | MEDLINE | ID: mdl-38430215

ABSTRACT

Sea buckthorn, a traditional medicinal plant, has been used for several years in China for the prevention and treatment of various diseases, a practice closely associated with its significant antioxidant activity. The aim of this study was to investigate the protective effects of sea buckthorn flavonoids on vascular endothelial cells in an oxidative stress environment. We isolated and extracted active compounds from sea buckthorn and investigated their impact on endothelial nitric oxide synthase (eNOS) activity through the PI3K/AKT-eNOS signaling pathway through a combination of network pharmacology and cellular experiments, elucidating the regulatory effects of these compounds on endothelial cell functions. Three flavonoids, named Fr.4-2-1, Fr.4-2-2 and Fr.4-2-3, were obtained from sea buckthorn. The results of network pharmacology indicated that they might exert their effects by regulating the PI3K-AKT signaling pathway. In vitro results showed that all three flavonoids were effective in alleviating the degree of oxidative stress in cells, among which Fr.4-2-1 exerted its antioxidant effects by modulating the PI3K/AKT-eNOS pathway. Flavonoids in sea buckthorn can effectively inhibit oxidative stress-induced cellular damage, preserving the integrity and functionality of endothelial cells, which is crucial for maintaining vascular health and function.


Subject(s)
Flavonoids , Hippophae , Nitric Oxide Synthase Type III , Oxidative Stress , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Hippophae/chemistry , Nitric Oxide Synthase Type III/metabolism , Flavonoids/pharmacology , Flavonoids/isolation & purification , Flavonoids/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Oxidative Stress/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Antioxidants/isolation & purification , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Cell Survival/drug effects , Protective Agents/pharmacology , Protective Agents/chemistry , Protective Agents/isolation & purification
18.
Front Immunol ; 15: 1258740, 2024.
Article in English | MEDLINE | ID: mdl-38322269

ABSTRACT

Ubiquitin-specific proteases (USPs), as one of the deubiquitinating enzymes (DUBs) families, regulate the fate of proteins and signaling pathway transduction by removing ubiquitin chains from the target proteins. USPs are essential for the modulation of a variety of physiological processes, such as DNA repair, cell metabolism and differentiation, epigenetic modulations as well as protein stability. Recently, extensive research has demonstrated that USPs exert a significant impact on innate and adaptive immune reactions, metabolic syndromes, inflammatory disorders, and infection via post-translational modification processes. This review summarizes the important roles of the USPs in the onset and progression of inflammatory diseases, including periodontitis, pneumonia, atherosclerosis, inflammatory bowel disease, sepsis, hepatitis, diabetes, and obesity. Moreover, we highlight a comprehensive overview of the pathogenesis of USPs in these inflammatory diseases as well as post-translational modifications in the inflammatory responses and pave the way for future prospect of targeted therapies in these inflammatory diseases.


Subject(s)
Ubiquitin-Specific Proteases , Ubiquitin , Humans , Ubiquitin/metabolism , Protein Processing, Post-Translational , Cell Differentiation , DNA Repair
19.
Stem Cell Res Ther ; 15(1): 41, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38355568

ABSTRACT

BACKGROUND: Corneal alkali burns can lead to ulceration, perforation, and even corneal blindness due to epithelial defects and extensive cell necrosis, resulting in poor healing outcomes. Previous studies have found that chitosan-based in situ hydrogel loaded with limbal epithelium stem cells (LESCs) has a certain reparative effect on corneal alkali burns. However, the inconsistent pore sizes of the carriers and low cell loading rates have resulted in suboptimal repair outcomes. In this study, 4D bioprinting technology was used to prepare a chitosan-based thermosensitive gel carrier (4D-CTH) with uniform pore size and adjustable shape to improve the transfer capacity of LESCs. METHODS: Prepare solutions of chitosan acetate, carboxymethyl chitosan, and ß-glycerophosphate sodium at specific concentrations, and mix them in certain proportions to create a pore-size uniform scaffold using 4D bioprinting technology. Extract and culture rat LESCs (rLESCs) in vitro, perform immunofluorescence experiments to observe the positivity rate of deltaNp63 cells for cell identification. Conduct a series of experiments to validate the cell compatibility of 4D-CTH, including CCK-8 assay to assess cell toxicity, scratch assay to evaluate the effect of 4D-CTH on rLESCs migration, and Calcein-AM/PI cell staining experiment to examine the impact of 4D-CTH on rLESCs proliferation and morphology. Establish a severe alkali burn model in rat corneas, transplant rLESCs onto the injured cornea using 4D-CTH, periodically observe corneal opacity and neovascularization using a slit lamp, and evaluate epithelial healing by fluorescein sodium staining. Assess the therapeutic effect 4D-CTH-loaded rLESCs on corneal alkali burn through histological evaluation of corneal tissue paraffin sections stained with hematoxylin and eosin, as well as immunofluorescence staining of frozen sections. RESULTS: Using the 4D-CTH, rLESCs were transferred to the alkali burn wounds of rats. Compared with the traditional treatment group (chitosan in situ hydrogel encapsulating rLESCs), the 4D-CTH-rLESC group had significantly higher repair efficiency of corneal injury, such as lower corneal opacity score (1.2 ± 0.4472 vs 0.4 ± 0.5477, p < 0.05) and neovascularization score (5.5 ± 1.118 vs 2.6 ± 0.9618, p < 0.01), and significantly higher corneal epithelial wound healing rate (72.09 ± 3.568% vs 86.60 ± 5.004%, p < 0.01). CONCLUSION: In summary, the corneas of the 4D-CTH-rLESC treatment group were similar to the normal corneas and had a complete corneal structure. These findings suggested that LESCs encapsulated by 4D-CTH significantly accelerated corneal wound healing after alkali burn and can be considered as a rapid and effective method for treating epithelial defects.


Subject(s)
Burns, Chemical , Chitosan , Corneal Injuries , Corneal Opacity , Rats , Animals , Burns, Chemical/drug therapy , Burns, Chemical/pathology , Chitosan/chemistry , Alkalies/pharmacology , Alkalies/therapeutic use , Wound Healing , Cornea , Corneal Injuries/therapy , Corneal Opacity/pathology , Stem Cells/pathology , Hydrogels/pharmacology
20.
Immun Ageing ; 21(1): 15, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378602

ABSTRACT

BACKGROUND: With the development of Hematopoietic Stem Cell Transplantation (HSCT) technology, increasing numbers of elderly patients were undergoing allogeneic HSCT and elderly patients with hematologic malignancies could benefit most from it. Preformed donor-specific human leukocyte antigen (HLA) antibodies (DSA) were associated with graft failure in HLA-mismatched allogeneic HSCT and the absence of DSA was the main criterion of selecting the donor. Except for sensitization events such as transfusion, pregnancy or previous transplantation, ageing affects the humoral immune response both quantitatively and qualitatively. To evaluate the prevalence and distribution of anti-HLA and antibodies of MHC class I chain related antigens A (MICA) specificities in different age groups before initial HSCT would provide HLA and MICA specific antibody profiles under the impact of ageing, which could provide meaningful information in the process of selecting suitable HLA-mismatched donors by avoiding preformed DSA. RESULTS: There were no significant differences in the distribution of anti-HLA class I, class II and anti-MICA antibodies among the three age groups in this study except that a significant lower negative ratio of anti-HLA class I, class II antibodies and higher positive rate of MICA antibodies with maximum mean fluorescent intensity (MFI) > 5000 in the elderly than in young age group. The distribution of antibody specificities against HLA -A, -B, -C, -DR, -DQ, -DP and MICA antigens in the three age groups were generally consistent. The anti-HLA class I antibody specificities with higher frequencies were A80,A68;B76,B45;Cw17, which were unlikely to become DSA in Chinese. Anti-HLA class II antibody specificities were more likely to become potential DSA than class I.DR7, DR9, DQ7, DQ8 and DQ9 were most likely to become potential DSA. CONCLUSIONS: The prevalence of anti-HLA and anti-MICA antibodies increased slightly as age increased. While ageing had a small impact on the distribution of antibody specificity frequencies against HLA-A, -B, -C, -DR,-DQ, -DP and MICA antigens in recipients awaiting initial HSCT from East China. The risk of developing preformed DSA was basically consistent in the three age groups and the elderly group might be more favorable in HLA-mismatched HSCT due to higher positive rate of anti-MICA antibody.

SELECTION OF CITATIONS
SEARCH DETAIL
...