Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1110301, 2023.
Article in English | MEDLINE | ID: mdl-36744028

ABSTRACT

Aims: The study aimed to evaluate the effects of pretreated Chinese herbal medicine (PCHM) on egg quality, production performance, histopathological changes in the uterus, antiox idant capacity, and antioxidant gene expression in late-phase layers. Methods: Jinghong No.1 layers (n = 360, 68 weeks old) were assigned randomly to one of f our dietary interventions. Each treatment was replicated six times. Repeat 15 chickens per g roup. All birds were fed a diet composed of a corn-soybean meal-based diet supplemented with 0, 0.2, 0.4, or 0.8% PCHM for 6 weeks. Results: Dietary PCHM supplementation had no significant effects on laying rate, feed con sumption, yolk color, and shape index. With increasing PCHM level the Haugh unit linearly increased (P < 0.05). Supplementation of 0.8% PCHM increased egg weight, compared with the control (P < 0.05). PCHM can effectively alleviated the pathological changes caused by aging in the uterus including hemorrhage, and many inflammatory cell infiltrations. Supplementation of 0.4% PCHM increased glutathione peroxidase (GSHPx) in liver, magnum, and plasm considerably, compared with the control (P < 0.05). Supplementation of PCHM decr ease in the liver, magnum, and uterus on malondialdehyde (MDA) content, compared with the control (P < 0.05). Compared with the control group, mRNA expressions of glutathione peroxidase 1 (GPX1), peroxidase 4 (GPX4), catalase (CAT), and nuclear factor E2-related factor 2 (Nrf2) in the magnum, liver, and uterus were dramatically rose in the 0.4% PCHM supplementation group (P < 0.05). In summary, dietary supplementation after PCHM increased egg weight and quality in late-phase laying hens. Conclusion: Dietary PCHM increased the antioxidative capacity of late-phase laying hens, which could be associated with increased mRNA expression of antioxidant enzymes and Nrf2. These findings provide potential for using PCHM to increase the production performance in late-phase laying hens.

2.
Chemistry ; 24(9): 2059-2064, 2018 Feb 09.
Article in English | MEDLINE | ID: mdl-29194860

ABSTRACT

The first cobalt-catalyzed enantioselective Negishi cross-coupling reaction, and the first arylation of α-halo esters with arylzinc halides, are disclosed. Employing a cobalt-bisoxazoline catalyst, various α-arylalkanoic esters were synthesized in excellent enantioselectivities and yields (up to 97 % ee and 98 % yield). A diverse range of functional groups, including ether, halide, thioether, silyl, amine, ester, acetal, amide, olefin and heteroaromatics is tolerated by this method. This method was suitable for gram-scale reactions, enabling the synthesis of (R)-xanthorrhizol with high enantiopurity. Radical clock experiments support the intermediacy of radicals.

3.
FASEB J ; 32(3): 1537-1549, 2018 03.
Article in English | MEDLINE | ID: mdl-29146734

ABSTRACT

Establishment of an in vivo small animal model of human tumor and human immune system interaction would enable preclinical investigations into the mechanisms underlying cancer immunotherapy. To this end, nonobese diabetic (NOD).Cg- PrkdcscidIL2rgtm1Wjl/Sz (null; NSG) mice were transplanted with human (h)CD34+ hematopoietic progenitor and stem cells, which leads to the development of human hematopoietic and immune systems [humanized NSG (HuNSG)]. HuNSG mice received human leukocyte antigen partially matched tumor implants from patient-derived xenografts [PDX; non-small cell lung cancer (NSCLC), sarcoma, bladder cancer, and triple-negative breast cancer (TNBC)] or from a TNBC cell line-derived xenograft (CDX). Tumor growth curves were similar in HuNSG compared with nonhuman immune-engrafted NSG mice. Treatment with pembrolizumab, which targets programmed cell death protein 1, produced significant growth inhibition in both CDX and PDX tumors in HuNSG but not in NSG mice. Finally, inhibition of tumor growth was dependent on hCD8+ T cells, as demonstrated by antibody-mediated depletion. Thus, tumor-bearing HuNSG mice may represent an important, new model for preclinical immunotherapy research.-Wang, M., Yao, L.-C., Cheng, M., Cai, D., Martinek, J., Pan, C.-X., Shi, W., Ma, A.-H., De Vere White, R. W., Airhart, S., Liu, E. T., Banchereau, J., Brehm, M. A., Greiner, D. L., Shultz, L. D., Palucka, K., Keck, J. G. Humanized mice in studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , CD8-Positive T-Lymphocytes/immunology , Immunity, Cellular/drug effects , Immunotherapy , Neoplasms/therapy , Programmed Cell Death 1 Receptor/immunology , Animals , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred NOD , Neoplasms/immunology , Neoplasms/pathology , Xenograft Model Antitumor Assays
4.
PLoS One ; 10(12): e0143598, 2015.
Article in English | MEDLINE | ID: mdl-26641240

ABSTRACT

Fusion tag is one of the best available tools to date for enhancement of the solubility or improvement of the expression level of recombinant proteins in Escherichia coli. Typically, two consecutive affinity purification steps are often necessitated for the purification of passenger proteins. As a fusion tag, acyl carrier protein (ACP) could greatly increase the soluble expression level of Glucokinase (GlcK), α-Amylase (Amy) and GFP. When fusion protein ACP-G2-GlcK-Histag and ACP-G2-Amy-Histag, in which a protease TEV recognition site was inserted between the fusion tag and passenger protein, were coexpressed with protease TEV respectively in E. coli, the efficient intracellular processing of fusion proteins was achieved. The resulting passenger protein GlcK-Histag and Amy-Histag accumulated predominantly in a soluble form, and could be conveniently purified by one-step Ni-chelating chromatography. However, the fusion protein ACP-GFP-Histag was processed incompletely by the protease TEV coexpressed in vivo, and a large portion of the resulting target protein GFP-Histag aggregated in insoluble form, indicating that the intracellular processing may affect the solubility of cleaved passenger protein. In this context, the soluble fusion protein ACP-GFP-Histag, contained in the supernatant of E. coli cell lysate, was directly subjected to cleavage in vitro by mixing it with the clarified cell lysate of E. coli overexpressing protease TEV. Consequently, the resulting target protein GFP-Histag could accumulate predominantly in a soluble form, and be purified conveniently by one-step Ni-chelating chromatography. The approaches presented here greatly simplify the purification process of passenger proteins, and eliminate the use of large amounts of pure site-specific proteases.


Subject(s)
Chromatography, Affinity/methods , Recombinant Fusion Proteins/isolation & purification , Endopeptidases/biosynthesis , Endopeptidases/genetics , Endopeptidases/isolation & purification , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Glucokinase/biosynthesis , Glucokinase/genetics , Glucokinase/isolation & purification , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemical synthesis , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Solubility , alpha-Amylases/biosynthesis , alpha-Amylases/genetics , alpha-Amylases/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...