Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 178
Filter
1.
BMC Infect Dis ; 24(1): 368, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566040

ABSTRACT

OBJECTIVE: Healthcare-associated Gram-negative bacterial meningitis is a substantial clinical issue with poor outcomes, especially for neurosurgical patients. Here, we aimed to study the characteristics and treatment options of patients with healthcare-associated carbapenem-non-susceptible (Carba-NS) Gram-negative bacterial meningitis. METHODS: This observational cohort study was conducted at a teaching hospital from 2004 to 2019. The clinical characteristics of patients with meningitis with Carba-NS and carbapenem-susceptible (Carba-S) bacilli were compared, and the antimicrobial chemotherapy regimens and outcomes for Carba-NS Gram-negative bacterial meningitis were analyzed. RESULTS: A total of 505 patients were included, of whom 83.8% were post-neurosurgical patients. The most common isolates were Acinetobacter spp. and Klebsiella spp., which had meropenem-resistance rates of 50.6% and 42.5%, respectively, and showed a markedly growing carbapenem-resistance trend. Kaplan-Meier curve analysis revealed that Carba-NS Gram-negative bacilli were associated with a significantly higher in-hospital mortality rate (18.8%, 35/186) compared to the Carba-S group (7.4%, 9/122; P = 0.001). For Carba-NS Enterobacterales meningitis, aminoglycoside-based and trimethoprim-sulfamethoxazole-based regimens yielded significantly higher clinical efficacy rates than non-aminoglycoside-based and non-trimethoprim-sulfamethoxazole-based regimens (69.0% vs. 38.7%, P = 0.019 and 81.8% vs. 46.9%, P = 0.036, respectively). For Carba-NS A. baumannii complex meningitis, tetracycline-based (including doxycycline, minocycline, or tigecycline) therapy achieved a significantly higher clinical efficacy rate (62.9%, 22/35) than the non-tetracycline-based therapy group (40.4%, 19/47; P = 0.044). CONCLUSIONS: Our findings revealed that Carba-NS Gram-negative bacilli are associated with higher in-hospital mortality in patients with healthcare-associated meningitis. The combination therapies involving particular old antibiotics may improve patients' outcome. TRIAL REGISTRATION: This study was registered on the Chinese Clinical Trial Register under ChiCTR2000036572 (08/2020).


Subject(s)
Carbapenems , Meningitis, Bacterial , Humans , Carbapenems/therapeutic use , Retrospective Studies , Anti-Bacterial Agents/therapeutic use , Gram-Negative Bacteria , Meningitis, Bacterial/drug therapy , Meningitis, Bacterial/microbiology , Delivery of Health Care , Microbial Sensitivity Tests
2.
Article in English | MEDLINE | ID: mdl-38547523

ABSTRACT

ABSTRACT: Sepsis-induced myocardial dysfunction (SIMD) commonly occurs in individuals with sepsis and is a severe complication with high morbidity and mortality rates. The current study aimed to investigate the effects and potential mechanisms of the natural steroidal sapogenin ruscogenin (RUS) against lipopolysaccharide (LPS)-induced myocardial injury in septic mice. We found that RUS effectively alleviated myocardial pathological damage, normalized cardiac function, and increased survival in septic mice. RNA sequencing (RNA-seq) demonstrated that RUS administration significantly inhibited the activation of the NOD-like receptor signaling pathway in the myocardial tissues of septic mice. Subsequent experiments further confirmed that RUS suppressed myocardial inflammation and pyroptosis during sepsis. Additionally, cultured HL-1 cardiomyocytes were challenged with LPS, and we observed that RUS could protect these cells against LPS-induced cytotoxicity by suppressing inflammation and pyroptosis. Notably, both the in vivo and in vitro findings indicated that RUS inhibited NLRP3 upregulation in cardiomyocytes stimulated with LPS. As expected, knockdown of NLRP3 blocked the LPS-induced activation of inflammation and pyroptosis in HL-1 cells. Furthermore, the cardioprotective effects of RUS on HL-1 cells under LPS stimulation were abolished by the novel NLRP3 agonist BMS-986299. Taken together, our results suggest that RUS can alleviate myocardial injury during sepsis, at least in part by suppressing NLRP3-mediated inflammation and pyroptosis, highlighting the potential of this molecule as a promising candidate for SIMD therapy.

3.
JAC Antimicrob Resist ; 6(2): dlae052, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38549710

ABSTRACT

Antimicrobial resistance surveillance systems have been established in China. Two representative national surveillance networks are the China Antimicrobial Surveillance Network (CHINET) and China Antimicrobial Resistance Surveillance System (CARSS), both of which were established in 2005. For all clinical isolates collected in both of these surveillance networks, the ratio of Gram-negative bacilli to Gram-positive cocci was approximately 7:3 during the past 18 years. Generally, Gram-negative bacilli have a higher antimicrobial resistance profile in China. The prevalence of ESBLs in Escherichia coli is as high as approximately 50%. Acinetobacter baumannii-calcoaceticus complex (ABC) has a high antimicrobial resistance profile, with a carbapenem resistance rate of approximately 66%. However, the prevalence of carbapenem-resistant ABC has also shown a decreasing trend from 2018 to 2022. The prevalence of vancomycin-resistant Enterococcus was low, and the prevalence of MRSA and carbapenem-resistant Pseudomonas aeruginosa showed decreasing trends from 2005 to 2022. CHINET surveillance data demonstrated that the prevalence of carbapenem-resistant Klebsiella pneumoniae showed a remarkable increasing trend from 2.9% (imipenem resistance) in 2005 to 25.0% in 2018, and then slightly decreased to 22.6% in 2022. The decreasing trends may reflect the antimicrobial stewardship efforts in China: a professional consensus on the rational clinical use of carbapenems was issued by the National Health Commission of China and was well implemented nationally; after that, the clinical use of carbapenems decreased slightly in China.

4.
Int J Antimicrob Agents ; 63(5): 107119, 2024 May.
Article in English | MEDLINE | ID: mdl-38417706

ABSTRACT

OBJECTIVES: Imipenem-relebactam (IMR), a novel ß-lactam/ß-lactamase inhibitor combination, is recommended for infections caused by difficult-to-treat Pseudomonas aeruginosa. This study aimed to investigate the evolution trajectory of IMR resistance under the selection of levofloxacin in P. aeruginosa. METHODS: Antimicrobial susceptibility testing, complete genome sequencing and gene manipulation experiments were performed. Quantitative reverse transcription PCR for specific genes and porin levels were detected. Evolution trajectory was simulated in vitro by induction assay. RESULTS: P. aeruginosa HS347 and HS355 were isolated from abdominal drainage of two neighbouring patients (S and Z) undergoing surgery of colon carcinoma in Shanghai, China, with the latter patient having received levofloxacin. They were closely related ST16 strains, and both carried blaKPC-2 plasmids highly similar to those of P. aeruginosa endemic clones from Zhejiang province, where patient Z had received enteroscopy before this admission. Acquisition of resistance was observed for both IMR and fluoroquinolones in HS355, likely prompted by treatment with levofloxacin. The T274I substitution in MexS (putative oxidoreductase), upregulated efflux pump operon mexEF-oprN and decreased production of porin OprD leading to cross-resistance to fluoroquinolones and IMR, which was also verified by in vitro mutant selection under levofloxacin selection. CONCLUSIONS: The emergence of a rare blaKPC-2-plasmid-bearing ST16 clone implies the horizonal spread and inter-regional dissemination of a high-risk plasmid-clone combination, representing a public health challenge. Levofloxacin exposure can select for mexS inactivating mutation, which in turn leads to IMR resistance phenotype, implicating the role of an unrelated, widely used antimicrobial agent in insidiously triggering the development of cross resistance to a latest ß-lactam/ß-lactamase inhibitor combination.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Imipenem , Levofloxacin , Microbial Sensitivity Tests , Pseudomonas Infections , Pseudomonas aeruginosa , beta-Lactamases , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Levofloxacin/pharmacology , Humans , Azabicyclo Compounds/pharmacology , Imipenem/pharmacology , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Pseudomonas Infections/microbiology , Pseudomonas Infections/drug therapy , China , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Mutation , beta-Lactamase Inhibitors/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics
5.
Antimicrob Agents Chemother ; 68(3): e0112823, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38289080

ABSTRACT

The Bacteriophage Exclusion (BREX) system is a novel antiphage defense system identified in Bacillus cereus in 2015. The purpose of this study was to investigate the presence of the BREX system defenses against antibiotic-resistant plasmids such as blaKPC and blaNDM invasion in Escherichia coli. The BREX system was present in 5.4% (23/424) of E. coli clinical isolates and 6.5% (84/1283) of E. coli strains with completely sequenced genomes in the GenBank database. All 23 BREX-positive E. coli clinical isolates were susceptible to carbapenems, while all five isolates carrying blaKPC and 11 carrying blaNDM were BREX-negative. For E. coli strains in the GenBank database, 37 of 38 strains carrying blaKPC and 109 of 111 strains carrying blaNDM were BREX negative. The recognition site sequence of methyltransferase PglX in a clinical E. coli 3756 was 5'-CANCATC-3' using PacBio single-molecular real-time sequencing. The transformation efficiency of plasmid psgRNA-ColAori-target with the PglX recognition site was reduced by 100% compared with the plasmid without the recognition site in E. coli DH5α-pHSG398-BREX. The BREX showed lower defense efficacy against plasmid psgRNA-15Aori-target which had the same plasmid backbone but different surrounding sequences of recognition sites with psgRNA-ColAori-target. The conjugation frequency of the KPC-2 plasmid and NDM-5 plasmid in E. coli 3756-ΔBREX was higher than that in E. coli 3756 clinical isolate (1.0 × 10-6 vs 1.3 × 10-7 and 5.5 × 10-7 vs 1.7 × 10-8, respectively). This study demonstrated that the type I BREX system defends against antibiotic-resistant plasmids in E. coli.


Subject(s)
Bacteriophages , Escherichia coli Infections , Humans , Escherichia coli , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Plasmids/genetics , Microbial Sensitivity Tests
6.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Article in English | MEDLINE | ID: mdl-37738153

ABSTRACT

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Humans , Acinetobacter baumannii/genetics , Carbapenems/pharmacology , Carbapenems/therapeutic use , Prospective Studies , Microbial Sensitivity Tests , Acinetobacter Infections/drug therapy , Acinetobacter Infections/epidemiology , Acinetobacter Infections/microbiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
7.
Microb Drug Resist ; 29(11): 497-503, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37603296

ABSTRACT

Fosfomycin can be used alone or in combination to treat methicillin-resistant Staphylococcus aureus (MRSA) infection. However, fosfomycin resistance has been observed in MRSA. In S. aureus, fosfomycin resistance is mediated by the fosfomycin-modifying enzyme FosB, or mutations in the target enzyme MurA. Mutations in the chromosomal glpT and uhpT genes, which encode fosfomycin transporters, also result in fosfomycin resistance. The three-component regulatory system HptRSA mediates the expression of uhpT and glpT in S. aureus. This study aimed to investigate the role of hptRSA mutation in fosfomycin resistance in MRSA clinical isolates. We found that hptRSA mutations were common in MRSA strains isolated from our hospital. Most mutations were amino acid substitutions and widely distributed in fosfomycin-sensitive and fosfomycin-resistant strains. However, HptA-truncated mutations were only found in fosB-negative fosfomycin-resistant strains with wild-type uhpT and glpT genes. Quantitative real-time PCR results showed that the transcription level of uhpT decreased by 13.7-25.6-fold in the HptA-truncated strains. Concordantly, the fosfomycin minimum inhibitory concentration (MIC) of HptA-truncated strains was 64-128 µg/mL, while SA240 was 2 µg/mL. The low transcription level of uhpT and high increase in MIC suggest that hptA mutation may lead to fosfomycin resistance in MRSA. We complemented hptA in one of the HptA-truncated clinical strains (SA179), showing reversal of fosfomycin resistance (from 128 to 32 µg/mL). Then we knocked out hptA in S. aureus Newman; fosfomycin MIC increased from 4 to 64 µg/mL, suggesting that HptA mutation may play an important role in fosfomycin resistance.


Subject(s)
Fosfomycin , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Fosfomycin/pharmacology , Methicillin-Resistant Staphylococcus aureus/genetics , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Mutation/genetics , Staphylococcal Infections/drug therapy
8.
Microb Pathog ; 183: 106289, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37567324

ABSTRACT

BACKGROUND: Host genetic single nucleotide polymorphisms can exert an influence susceptibility to tuberculosis infection. Previous investigations have demonstrated an association between the polymorphism in the ALOX5 gene and a range of diseases, encompassing not only noninfectious conditions like asthma, acute myocardial infarction, and cerebral infarction but also infections caused by various pathogens. However, the relationship between ALOX5 gene polymorphism and susceptibility to tuberculosis has received limited research attention. The ALOX5 gene encodes arachidonic acid 5-lipoxygenase(5-LO), which serves as the initiating catalyst in the generation of the inflammatory mediator leukotriene. Leukotrienes, products derived from the 5-LO pathway, are potent proinflammatory lipid mediators that assume a pivotal role in tuberculosis infections.Consequently, ALOX5 gene variants may be intricately associated with the pathogenesis of tuberculosis. In instances where the host exhibits immunocompromisation, infection with Mycobacterium tuberculosis can impact multiple systems. The involvement of multiple systems significantly augments the complexity of treatment and escalates patient mortality rates. Regrettably, the underlying mechanisms driving multisystem tuberculosis pathogenesis remain enigmatic, with clinicians paying scant attention to this aspect. Although the protein encoded by the ALOX5 gene represents a pivotal enzyme that catalyzes the metabolism of arachidonic acid into LXA4, and thereby plays a significant role in the inflammatory response during tuberculosis infection, studies investigating ALOX5 gene polymorphism and its association with susceptibility to multisystem tuberculosis in the Chinese Han population are exceptionally scarce. Therefore, the primary objective of this study is to comprehensively examine the correlation between ALOX5 gene polymorphisms and susceptibility to tuberculosis within the Chinese Han population, with particular emphasis on multisystemic tuberculosis. METHODS: A case‒control study design was employed, encompassing 382 individuals with pulmonary tuberculosis and 367 individuals with multisystemic tuberculosis as the case groups, along with 577 healthy controls.Whole blood DNA was extracted from all patients and healthy controls. Subsequently, three tag polymorphisms (rs2029253, rs7896431, rs2115819) within the ALOX5 gene were selectively identified and genotyped. RESULTS: After adjusting for age and sex, the presence of allele A at rs2029253 exhibited a pronounced association with an elevated risk of TB susceptibility when compared to the tuberculosis group and healthy control group. (ORa: 2.174, 95% CI: 1.827-2.587; Pa<0.001, respectively). Notably, the rs2029253 AG genotype and AA genotype displayed a significantly increased susceptibility to tuberculosis (ORa: 2.236, 95% CI: 1.769-2.825; Pa <0.001 and ORa: 4.577, 95% CI: 2.950-7.100; Pa <0.001, respectively) compared to the GG genotype. Moreover, in the analysis utilizing genetic models, rs2029253 also exhibited a markedly heightened susceptibility to tuberculosis in additive models, dominant models, and recessive models (Pa <0.001). Conversely, no significant association was observed between rs7896431, rs2115819, and tuberculosis. In the subgroup analysis, when comparing the pulmonary tuberculosis group with the healthy control group, we observed no significant disparities in the distribution frequencies of alleles, genotypes, and gene models (additive model, dominant model, and recessive model) for the three tag SNPs, with P-values were >0.05 after adjusting for age and sex. Additionally, we noted that the presence of allele A at rs2029253 was linked to an increased susceptibility to tuberculosis in the multisystemic tuberculosis group relative to the healthy control group (ORa: 2.292, 95% CI: 1.870-2.810; Pa<0.001). Similarly, the rs2029253 AG genotype, AA genotype, and gene models, including the additive model, dominant model, and recessive model, demonstrated a significantly elevated risk of tuberculosis susceptibility. CONCLUSIONS: The polymorphism in the ALOX5 gene is associated with susceptibility to multisystemic tuberculosis in the Chinese Han population.


Subject(s)
East Asian People , Genetic Predisposition to Disease , Tuberculosis , Humans , Arachidonate 5-Lipoxygenase/genetics , Case-Control Studies , China , East Asian People/ethnology , East Asian People/genetics , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genetic Predisposition to Disease/genetics , Genotype , Polymorphism, Single Nucleotide , Tuberculosis/genetics , Tuberculosis/metabolism , Tuberculosis, Pulmonary/genetics
9.
BMC Pulm Med ; 23(1): 265, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37464360

ABSTRACT

BACKGROUND: Severe tuberculosis constitutes a significant menace to human safety and well-being, with a considerable mortality rate. The severity of tuberculosis can be impacted by genetic variations in host genes, particularly single nucleotide polymorphisms (SNPs). METHODS: A case‒control study was undertaken, encompassing a cohort of 1137 tuberculosis patients (558 with severe tuberculosis and 579 with mild tuberculosis), alongside 581 healthy controls within the age range of fifteen to forty-five years. Whole blood DNA was extracted from all participants, and three tag polymorphisms (rs1884444, rs7518660, rs7539625) of the IL23R gene were selectively identified and genotyped. RESULTS: No significant correlation was observed between the IL23R gene polymorphisms (rs1884444, rs7518660, and rs7539625) and tuberculosis. Upon comparing the tuberculosis group with the healthy control group, the mild tuberculosis group with the healthy control group, and the severe tuberculosis group with the healthy control group, the obtained P-values were> 0.05. However, in the comparison between severe tuberculosis and mild tuberculosis, the presence of rs1884444 G alleles exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex (ORa: 1.199, 95% CI: 1.009-1.424; Pa=0.039, respectively). In subgroup analysis, after accounting for confounding factors, including age and sex, rs1884444 G alleles continued to demonstrate a significantly heightened risk of severe tuberculosis. Nonetheless, the comparison between the multisystemic tuberculosis group and the mild tuberculosis group was no significant difference. Notably, rs1884444 of the IL23R gene exhibited a noteworthy association with the risk of severe tuberculosis in the comparison between severe tuberculosis and mild tuberculosis before and after adjusting for age and sex (ORa: 1.301, 95% CI: 1.030-1.643; Pa=0.027, respectively). Furthermore, the presence of the rs1884444 G allele exhibited a significantly increased risk of severe tuberculosis after adjusting for age and sex in the comparison between tuberculous meningitis and mild tuberculosis (ORa: 1.646, 95% CI: 1.100-2.461; Pa=0.015, respectively). CONCLUSIONS: The present study suggests that there is no significant association between IL23R gene polymorphism and tuberculosis susceptibility in the Chinese Han population. However, it does indicate a potential link between IL23R polymorphism and an increased risk of developing severe tuberculosis.


Subject(s)
Polymorphism, Single Nucleotide , Tuberculosis , Humans , Adolescent , Young Adult , Adult , Middle Aged , Genetic Predisposition to Disease , Case-Control Studies , East Asian People , Genotype , Tuberculosis/genetics , Gene Frequency , Receptors, Interleukin/genetics
10.
Clin Interv Aging ; 18: 869-880, 2023.
Article in English | MEDLINE | ID: mdl-37284594

ABSTRACT

The impact of vaccinating the older population against vaccine-preventable diseases in terms of health, social and economic benefits has been increasingly recognised. However, there is a gap in the utilisation of vaccines worldwide. The population is ageing at an unprecedented pace in the Asia-Pacific (APAC) region, with the number of persons older than 65 years set to double by 2050 to around 1.3 billion. More than 18% of the population in Japan, Hong Kong, and China is over the age of 65 years. This highlights the importance of prioritising resources to address societal obligations toward the needs of the ageing generation. This review provides an overview of the challenges to adult vaccination in APAC, drivers to increase vaccination coverage, vaccination insights gained through the COVID-19 pandemic, and potential measures to increase the uptake of adult vaccines in the region.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , Pandemics , COVID-19/prevention & control , Vaccination , Hong Kong/epidemiology
11.
Clin Infect Dis ; 77(4): 499-509, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37154071

ABSTRACT

BACKGROUND: Carbapenemase-producing (CP) Escherichia coli (CP-Ec) are a global public health threat. We aimed to describe the clinical and molecular epidemiology and outcomes of patients from several countries with CP-Ec isolates obtained from a prospective cohort. METHODS: Patients with CP-Ec were enrolled from 26 hospitals in 6 countries. Clinical data were collected, and isolates underwent whole-genome sequencing. Clinical and molecular features and outcomes associated with isolates with or without metallo-ß-lactamases (MBLs) were compared. The primary outcome was desirability of outcome ranking (DOOR) at 30 days after the index culture. RESULTS: Of the 114 CP-Ec isolates in Consortium on resistance against carbapenems in Klebsiella and other Enterobacterales-2 (CRACKLE-2), 49 harbored an MBL, most commonly blaNDM-5 (38/49, 78%). Strong regional variations were noted with MBL-Ec predominantly found among patients in China (23/49). Clinically, MBL-Ec were more often from urine sources (49% vs 29%), less often met criteria for infection (39% vs 58%, P = .04), and had lower acuity of illness when compared with non-MBL-Ec. Among patients with infection, the probability of a better DOOR outcome for a randomly selected patient with MBL-Ec as compared with non-MBL-Ec was 62% (95% CI: 48.2-74.3%). Among infected patients, non-MBL-Ec had increased 30-day (26% vs 0%; P = .02) and 90-day (39% vs 0%; P = .001) mortality compared with MBL-Ec. CONCLUSIONS: Emergence of CP-Ec was observed with important geographic variations. Bacterial characteristics, clinical presentations, and outcomes differed between MBL-Ec and non-MBL-Ec. Mortality was higher among non-MBL isolates, which were more frequently isolated from blood, but these findings may be confounded by regional variations.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , beta-Lactamases , Humans , Prospective Studies , beta-Lactamases/genetics , Escherichia coli/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Microbial Sensitivity Tests
12.
Microbiol Spectr ; 11(3): e0093223, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37199669

ABSTRACT

The role of novel ß-lactam/ß-lactamase inhibitor combinations in ceftazidime-nonsusceptible (CAZ-NS) and imipenem-nonsusceptible (IPM-NS) Pseudomonas aeruginosa has not been fully elucidated. This study evaluated the in vitro activity of novel ß-lactam/ß-lactamase inhibitor combinations against Pseudomonas aeruginosa clinical isolates, determined how avibactam restored ceftazidime activity, and compared the activity of ceftazidime-avibactam (CZA) and imipenem-relebactam (IMR) against KPC-producing P. aeruginosa. Similar high susceptibility rates for CZA, IMR, and ceftolozane-tazobactam (88.9% to 89.8%) were found for 596 P. aeruginosa clinical isolates from 11 hospitals in China, and a higher susceptibility rate to ceftazidime than imipenem was observed (73.5% versus 63.1%). For CAZ-NS and IPM-NS isolates, susceptibility rates for CZA, ceftolozane-tazobactam, and IMR were 61.5% (75/122), 54.9% (67/122), and 51.6% (63/122), respectively. For CAZ-NS, IPM-NS but CZA-susceptible isolates, 34.7% (26/75) harbored acquired ß-lactamases with KPC-2 predominant (n = 19), and 45.3% (34/75) presented overexpression of chromosomal ß-lactamase ampC. Among 22 isolates carrying KPC-2 carbapenemase alone, susceptibility rates to CZA and IMR were 86.4% (19/22) and 9.1% (2/22), respectively. Notably, 95% (19/20) of IMR-nonsusceptible isolates had an inactivating mutation of oprD gene. In conclusion, CZA, ceftolozane-tazobactam, and IMR exhibit high activity against P. aeruginosa, and CZA is more active than IMR against CAZ-NS and IPM-NS isolates as well as KPC-producing P. aeruginosa. Avibactam overcomes ceftazidime resistance engendered by KPC-2 enzyme and overexpressed AmpC. IMPORTANCE The emergence of antimicrobial resistance poses a particular challenge globally, and the concept of P. aeruginosa with "difficult-to-treat" resistance (DTR-P. aeruginosa) was proposed. Here, P. aeruginosa clinical isolates were highly susceptible to three ß-lactamase inhibitor combinations, CZA, IMR, and ceftolozane-tazobactam. The combination of KPC-2 enzyme and nonfunctional porin OprD contributed to IMR resistance in P. aeruginosa, and CZA was more active than IMR in fighting against KPC-2-producing P. aeruginosa. CZA also showed good activity against CAZ-NS and IPM-NS P. aeruginosa, primarily by inhibiting KPC-2 enzyme and overproduced AmpC, supporting the clinical use of CZA in the treatment of infections caused by DTR-P. aeruginosa.


Subject(s)
Ceftazidime , Pseudomonas Infections , Humans , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Pseudomonas aeruginosa/genetics , beta-Lactamase Inhibitors/pharmacology , Pseudomonas Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Tazobactam/pharmacology , Tazobactam/therapeutic use , beta-Lactamases/genetics , Imipenem/pharmacology , Imipenem/therapeutic use , Microbial Sensitivity Tests
13.
Antimicrob Agents Chemother ; 67(6): e0013523, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37212660

ABSTRACT

Eleven blaPER-1-positive Pseudomonas aeruginosa clinical isolates showed variable susceptibility to ceftazidime-avibactam (CZA). The genetic contexts of blaPER-1 were identical (ISCR1-blaPER-1-gst) except for the ST697 isolate HS204 (ISCR1-ISPa1635-blaPER-1-gst). The insertion of ISPa1635 in ISCR1 upstream of blaPER-1 created a hybrid promoter, which elevated the blaPER-1 transcription level and resulted in increased resistance to CZA, ceftolozane-tazobactam, cefepime-zidebactam, and cefiderocol. Diversity in the promoter activity of blaPER-1 partially explains the variable susceptibility to CZA in PER-producing isolates.


Subject(s)
Pseudomonas Infections , beta-Lactamase Inhibitors , Humans , beta-Lactamase Inhibitors/pharmacology , beta-Lactamase Inhibitors/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Lactams , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , Cefiderocol
14.
Mycoses ; 66(8): 723-731, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37059587

ABSTRACT

BACKGROUND: Invasive fungal disease (IFD) is associated with high morbidity and mortality. Data are lacking regarding physicians' perspectives on the diagnosis and management of IFD in China. OBJECTIVES: To evaluate physicians' perspectives on the diagnosis and management of IFD. METHODS: Based on current guidelines, a questionnaire was designed and administered to 294 physicians working in haematology departments, intensive care units, respiratory departments and infectious diseases departments in 18 hospitals in China. RESULTS: The total score and subsection scores for invasive candidiasis, invasive aspergillosis (IA), cryptococcosis and invasive mucormycosis (IM) were 72.0 ± 12.2 (maximum = 100), 11.1 ± 2.7 (maximum = 19), 43.0 ± 7.8 (maximum = 57), 8.1 ± 2.0 (maximum = 11) and 9.8 ± 2.3 (maximum = 13), respectively. Although the perspectives of the Chinese physicians were in good overall agreement with guideline recommendations, some knowledge gaps were identified. Specific areas in which the physicians' perspectives and guideline recommendations differed included use of the ß-D-glucan test to facilitate the diagnosis of IFD, relative utility of the serum galactomannan test and bronchoalveolar lavage fluid galactomannan test in patients with agranulocytosis, use of imaging in the diagnosis of mucormycosis, risk factors for mucormycosis, indications for initiating antifungal therapy in patients with haematological malignancies, when to start empirical therapy in mechanically ventilated patients, first-line drugs for mucormycosis and treatment courses for IA and IM. CONCLUSION: This study highlights the main areas that could be targeted by training programs to improve the knowledge of physicians treating patients with IFD in China.


Subject(s)
Aspergillosis , Candidiasis, Invasive , Invasive Fungal Infections , Mucormycosis , Humans , Mucormycosis/diagnosis , Mucormycosis/drug therapy , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/drug therapy , Invasive Fungal Infections/microbiology , Aspergillosis/diagnosis , Candidiasis, Invasive/diagnosis , Risk Factors
16.
J Microbiol Immunol Infect ; 56(4): 653-671, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36868960

ABSTRACT

The dissemination of carbapenem-resistant Gram-negative bacilli (CRGNB) is a global public health issue. CRGNB isolates are usually extensively drug-resistant or pandrug-resistant, resulting in limited antimicrobial treatment options and high mortality. A multidisciplinary guideline development group covering clinical infectious diseases, clinical microbiology, clinical pharmacology, infection control, and guideline methodology experts jointly developed the present clinical practice guidelines based on best available scientific evidence to address the clinical issues regarding laboratory testing, antimicrobial therapy, and prevention of CRGNB infections. This guideline focuses on carbapenem-resistant Enterobacteriales (CRE), carbapenem-resistant Acinetobacter baumannii (CRAB), and carbapenem-resistant Pseudomonas aeruginosa (CRPA). Sixteen clinical questions were proposed from the perspective of current clinical practice and translated into research questions using PICO (population, intervention, comparator, and outcomes) format to collect and synthesize relevant evidence to inform corresponding recommendations. The grading of recommendations, assessment, development and evaluation (GRADE) approach was used to evaluate the quality of evidence, benefit and risk profile of corresponding interventions and formulate recommendations or suggestions. Evidence extracted from systematic reviews and randomized controlled trials (RCTs) was considered preferentially for treatment-related clinical questions. Observational studies, non-controlled studies, and expert opinions were considered as supplementary evidence in the absence of RCTs. The strength of recommendations was classified as strong or conditional (weak). The evidence informing recommendations derives from studies worldwide, while the implementation suggestions combined the Chinese experience. The target audience of this guideline is clinician and related professionals involved in management of infectious diseases.


Subject(s)
Carbapenems , Gram-Negative Bacterial Infections , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Carbapenems/therapeutic use , Gram-Negative Bacteria , Gram-Negative Bacterial Infections/diagnosis , Gram-Negative Bacterial Infections/drug therapy , Gram-Negative Bacterial Infections/prevention & control , Infection Control
17.
Clin Exp Pharmacol Physiol ; 50(7): 554-560, 2023 07.
Article in English | MEDLINE | ID: mdl-36941132

ABSTRACT

We first reported the vanM vancomycin resistance gene in enterococci in Shanghai, China in 2006 and later found it to be the predominant van gene in vancomycin-resistant enterococci (VRE). In this study, we successively collected 1292 Enterococcus faecium and Enterococcus faecalis strains from in- and outpatients at Huashan Hospital, Fudan University and found that nearly all of the isolates (1290/1292) were vancomycin-sensitive determined by the VITEK 2 system. However, using a modified macromethod-based disk diffusion test, 10 E. faecium isolates that were previously determined to be vancomycin-sensitive by the VITEK 2 system were found to have colonies in the vancomycin disk inhibition zone. Pulse-field gel electrophoresis results showed that each randomly selected colony in the inhibition zone belonged to the same clone as the original strain. All 10 isolates were later found to be vanM-positive. The disk diffusion-based method may aid in the detection of vanM-positive E. faecium with low vancomycin minimum inhibitory concentrations and prevent missing the detection of vancomycin sensitivity-variable enterococci.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin/pharmacology , Enterococcus faecium/genetics , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/drug therapy , China , Microbial Sensitivity Tests , Vancomycin-Resistant Enterococci/genetics
18.
Antimicrob Agents Chemother ; 67(4): e0154722, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36976005

ABSTRACT

Sequence type (ST) 15 has become an emerging clone of carbapenem-resistant Klebsiella pneumoniae in which type I-E* CRISPR-Cas usually exists, indicating that the CRISPR-Cas system may not be able to block the transfer of blaKPC plasmids. The purpose of this study was to explore the mechanisms underlying dissemination of blaKPC plasmids in K. pneumoniae ST15. The type I-E* CRISPR-Cas system was present in 98.0% of 612 nonduplicate K. pneumoniae ST15 strains (88 clinical isolates and 524 from the NCBI database). Twelve ST15 clinical isolates were completely sequenced, and self-targeted protospacers were found on blaKPC plasmids flanked by a protospacer adjacent motif (PAM) of AAT in 11 isolates. The type I-E* CRISPR-Cas system was cloned from a clinical isolate and expressed in Escherichia coli BL21(DE3). In BL21(DE3) harboring the CRISPR system, the transformation efficiency of protospacer-bearing plasmids with a PAM of AAT was reduced by 96.2% compared to the empty vector, indicating that the type I-E* CRISPR-Cas system impeded blaKPC plasmid transfer. BLAST for known anti-CRISPR (Acr) amino acid sequences uncovered a novel AcrIE9-like protein with 40.5% to 44.6% sequence identity with AcrIE9 designated AcrIE9.2, which was present in 90.1% (146 of 162) of ST15 strains carrying both blaKPC and the CRISPR-Cas system. When AcrIE9.2 was cloned and expressed in a ST15 clinical isolate, the conjugation frequency of a CRISPR-targeted blaKPC plasmid was increased from 3.96 × 10-6 to 2.01 × 10-4 compared to the AcrIE9.2 absent strain. In conclusion, AcrIE9.2 may be associated with the dissemination of blaKPC in ST15 by repressing CRISPR-Cas activity.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , beta-Lactamases/genetics , beta-Lactamases/metabolism , Klebsiella pneumoniae , Plasmids/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , Anti-Bacterial Agents
19.
Front Microbiol ; 14: 1125531, 2023.
Article in English | MEDLINE | ID: mdl-36970694

ABSTRACT

The CRISPR-Cas system in Klebsiella pneumoniae can prevent the entry of bla KPC-IncF plasmids. However, some clinical isolates bear the KPC-2 plasmids despite carrying the CRISPR-Cas system. The purpose of this study was to characterize the molecular features of these isolates. A total of 697 clinical K. pneumoniae isolates were collected from 11 hospitals in China, and tested for the presence of CRISPR-Cas systems using polymerase chain reaction. Overall, 164 (23.5%) of 697 K. pneumoniae isolates had type I-E* (15.9%) or type I-E (7.7%) CRISPR-Cas systems. The most prevalent sequence type among isolates carrying type I-E* CRISPR was ST23 (45.9%), followed by ST15 (18.9%). Isolates with CRISPR-Cas system were more susceptible to ten antimicrobials tested, including carbapenems, compared with the CRISPR-negative isolates. However, there were still 21 CRISPR-Cas-carrying isolates that showed resistance to carbapenems, and these isolates were subjected to whole-genome sequencing. Thirteen of these 21 isolates carried bla KPC-2-bearing plasmids, of which nine had a new plasmid type, IncFIIK34, and two had IncFII(PHN7A8) plasmids. In addition, 12 of these 13 isolates belonged to ST15, while only eight (5.6%, 8/143) isolates belonged to ST15 in carbapenem-susceptible K. pneumoniae carrying CRISPR-Cas systems. In conclusion, we found that bla KPC-2-bearing IncFII plasmids could co-exist with the type I-E* CRISPR-Cas systems in ST15 K. pneumoniae.

20.
Int J Antimicrob Agents ; 61(5): 106777, 2023 May.
Article in English | MEDLINE | ID: mdl-36905946

ABSTRACT

OBJECTIVES: Klebsiella pneumoniae (K. pneumoniae) is one of the most common bacteria in the hospital-acquired central nervous system (CNS) infections. Central nervous system infections caused by carbapenem-resistant K. pneumoniae (CRKP) are associated with significant mortality rates and high hospital costs due to limited antibiotic treatment options. This retrospective study aimed to evaluate the clinical efficacy of ceftazidime-avibactam (CZA) for the treatment of CNS infections caused by CRKP. METHODS: Twenty-one patients with hospital-acquired CNS infections caused by CRKP who received treatment with CZA for ≥ 72 hours were enrolled. The primary outcome was to assess the clinical and microbiology efficacy of CZA for the treatment of CNS infections caused by CRKP. RESULTS: A high burden of comorbidity was discovered in 20 of 21 patients (95.2%). Most patients had a history of craniocerebral surgery and 17 (81.0%) of the patients were in the intensive care unit with a median APACHE II score of 16 (IQR 9-20) and SOFA score of 6 (IQR 3-7). Eighteen cases were treated by CZA-based combination therapies, while the remaining three cases were treated with CZA alone. At the end of the treatment, the overall clinical efficacy was 76.2% (16 of 21) with a bacterial clearance rate of 81.0% (17 of 21) and all-cause mortality of 23.8% (five of 21). CONCLUSION: This study showed that CZA-based combination therapy is an effective treatment option for CNS infections caused by CRKP.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Central Nervous System Infections , Klebsiella Infections , Humans , Klebsiella pneumoniae , Retrospective Studies , Klebsiella Infections/microbiology , Ceftazidime/therapeutic use , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/therapeutic use , Drug Combinations , Carbapenems/therapeutic use , Central Nervous System Infections/drug therapy , Hospitals , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...