Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 594
Filter
1.
Heliyon ; 10(11): e31705, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38845982

ABSTRACT

Acute myeloid leukemia (AML) is a prevalent hematological malignancy among adults. Recent studies suggest that the length of telomeres could significantly affect both the risk of developing AML and the overall survival (OS). Despite the limited focus on the prognostic value of telomere-related genes (TRGs) in AML, our study aims at addressing this gap by compiling a list of TRGs from TelNet, as well as collecting clinical information and TRGs expression data through the Gene Expression Omnibus (GEO) database. The GSE37642 dataset, sourced from GEO and based on the GPL96 platform, was divided into training and validation sets at a 6:4 ratio. Additionally, the GSE71014 dataset (based on the GPL10558 platform), GSE12417 dataset (based on the GPL96 and GPL570 platforms), and another portion of the GSE37642 dataset (based on the GPL570 platform) were designated as external testing sets. Univariate Cox regression analysis identified 96 TRGs significantly associated with OS. Subsequent Lasso-Cox stepwise regression analysis pinpointed eight TRGs (MCPH1, SLC25A6, STK19, PSAT1, KCTD15, DNMT3B, PSMD5, and TAF2) exhibiting robust predictive potential for patient survival. Both univariate and multivariate survival analyses unveiled TRG risk scores and age as independent prognostic variables. To refine the accuracy of survival prognosis, we developed both a nomogram integrating clinical parameters and a predictive risk score model based on TRGs. In subsequent investigations, associations were emphasized not solely regarding the TRG risk score and immune infiltration patterns but also concerning the response to immune-checkpoint inhibitor (ICI) therapy. In summary, the establishment of a telomere-associated genetic risk model offers a valuable tool for prognosticating AML outcomes, thereby facilitating informed treatment decisions.

2.
Curr Gene Ther ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38847249

ABSTRACT

AIMS: Investigating the impact of stemness-related circadian rhythm disruption (SCRD) on hepatocellular carcinoma (HCC) prognosis and its potential as a predictor for immunotherapy response. BACKGROUND: Circadian disruption has been linked to tumor progression through its effect on the stemness of cancer cells. OBJECTIVE: Develop a novel signature for SCRD to accurately predict clinical outcomes and immune therapy response in patients with HCC. METHODS: The stemness degree of patients with HCC was assessed based on the stemness index (mRNAsi). The co-expression circadian genes significantly correlated with mRNAsi were identified and defined as stemness- and circadian-related genes (SCRGs). The SCRD scores of samples and cells were calculated based on the SCRGs. Differentially expressed genes with a prognostic value between distinct SCRD groups were identified in bulk and single-cell datasets to develop an SCRD signature. RESULTS: A higher SCRD score indicates a worse patient survival rate. Analysis of the tumor microenvironment revealed a significant correlation between SCRD and infiltrating immune cells. Heterogeneous expression patterns, functional states, genomic variants, and cell-cell interactions between two SCRD populations were revealed by transcriptomic, genomic, and interaction analyses. The robust SCRD signature for predicting immunotherapy response and prognosis in patients with HCC was developed and validated in multiple independent cohorts. CONCLUSIONS: In summary, distinct tumor immune microenvironment patterns were confirmed under SCRD in bulk and single-cell transcriptomic, and SCRD signature associated with clinical outcomes and immunotherapy response was developed and validated in HCC.

3.
ACS Macro Lett ; : 703-710, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767665

ABSTRACT

Polymer vesicles are of profound interest for designing delivery vehicles and nanoreactors toward a variety of biomedical and catalytic applications, yet robust synthesis of stable and permeable vesicles remains challenging. Here, we propose an electrostatic-templated polymerization that enables fabrication of polyelectrolyte vesicles with simultaneously regulated stability and permeability. In our design, cationic monomers were copolymerized with cross-linkers in the presence of a polyanionic-neutral diblock copolymer as a template. By properly choosing the block length ratio of the template, we fabricated a type of polyion complex vesicle consisting of a cross-linked cationic membrane, electrostatically assembled with the template copolymer which can be removed by sequential dissociation and separation under concentrated salt. We finally obtained stable polyelectrolyte vesicles of regulated size, membrane permeability, and response properties by tuning the synthesis factors including ionic strength, cross-linker type, and fraction as well as different monomers and concentrations. As a proof-of-concept, lipase was loaded in the designed cationic vesicles, which exhibited enhanced enzyme stability and activity. Our study has developed a novel and robust strategy for controllable synthesis of a new class of stable and permeable polymer (polyelectrolyte) vesicles that feature great potential applications as functional delivery carriers and nanoreactors.

5.
Food Chem ; 452: 139553, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38733687

ABSTRACT

This study presents novel methodologies and materials for selectively and sensitively determining gibberellin traces in licorice to address food safety concerns. A novel hydrophilic imprinted resin-graphene oxide composite (HMIR-GO) was developed with fast mass transfer, high adsorption capacity, and exceptional aqueous recognition performance for gibberellin. Leveraging the advantages of molecular imprinting, hydrophilic resin synthesis, and rapid mass transfer characteristics of GO, HMIR-GO was employed as an adsorbent, showing resistance to matrix interference. Coupled with HPLC, a rapid and selective method for determining gibberellin was established. Under optimal conditions, the method exhibited a wide linear range (0.02-5.00 µg g-1, r = 0.9999), low detection limits (3.3 ng g-1), and satisfactory recoveries (92.0-98.4%), enabling the accurate and rapid detection of gibberellin in licorice. This study introduces a pioneering strategy for the selective extraction and determination of trace gibberellin levels, offering insights for similar applications in functional foods.


Subject(s)
Gibberellins , Glycyrrhiza , Graphite , Hydrophobic and Hydrophilic Interactions , Molecular Imprinting , Graphite/chemistry , Glycyrrhiza/chemistry , Gibberellins/chemistry , Gibberellins/analysis , Gibberellins/isolation & purification , Adsorption , Solid Phase Extraction/methods , Solid Phase Extraction/instrumentation , Chromatography, High Pressure Liquid , Limit of Detection
6.
Nature ; 630(8015): 247-254, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750358

ABSTRACT

The noradrenaline transporter has a pivotal role in regulating neurotransmitter balance and is crucial for normal physiology and neurobiology1. Dysfunction of noradrenaline transporter has been implicated in numerous neuropsychiatric diseases, including depression and attention deficit hyperactivity disorder2. Here we report cryo-electron microscopy structures of noradrenaline transporter in apo and substrate-bound forms, and as complexes with six antidepressants. The structures reveal a noradrenaline transporter dimer interface that is mediated predominantly by cholesterol and lipid molecules. The substrate noradrenaline binds deep in the central binding pocket, and its amine group interacts with a conserved aspartate residue. Our structures also provide insight into antidepressant recognition and monoamine transporter selectivity. Together, these findings advance our understanding of noradrenaline transporter regulation and inhibition, and provide templates for designing improved antidepressants to treat neuropsychiatric disorders.


Subject(s)
Antidepressive Agents , Cryoelectron Microscopy , Models, Molecular , Norepinephrine Plasma Membrane Transport Proteins , Norepinephrine , Protein Multimerization , Antidepressive Agents/chemistry , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Norepinephrine Plasma Membrane Transport Proteins/metabolism , Norepinephrine Plasma Membrane Transport Proteins/chemistry , Humans , Norepinephrine/metabolism , Norepinephrine/chemistry , Binding Sites , Cholesterol/metabolism , Cholesterol/chemistry , Substrate Specificity , Protein Binding
7.
Signal Transduct Target Ther ; 9(1): 139, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811552

ABSTRACT

Conventional type 1 dendritic cells (cDC1) are the essential antigen-presenting DC subset in antitumor immunity. Suppressing B-cell lymphoma 9 and B-cell lymphoma 9-like (BCL9/BCL9L) inhibits tumor growth and boosts immune responses against cancer. However, whether oncogenic BCL9/BCL9L impairs antigen presentation in tumors is still not completely understood. Here, we show that targeting BCL9/BCL9L enhanced antigen presentation by stimulating cDC1 activation and infiltration into tumor. Pharmacological inhibition of BCL9/BCL9L with a novel inhibitor hsBCL9z96 or Bcl9/Bcl9l knockout mice markedly delayed tumor growth and promoted antitumor CD8+ T cell responses. Mechanistically, targeting BCL9/BCL9L promoted antigen presentation in tumors. This is due to the increase of cDC1 activation and tumor infiltration by the XCL1-XCR1 axis. Importantly, using single-cell transcriptomics analysis, we found that Bcl9/Bcl9l deficient cDC1 were superior to wild-type (WT) cDC1 at activation and antigen presentation via NF-κB/IRF1 signaling. Together, we demonstrate that targeting BCL9/BCL9L plays a crucial role in cDC1-modulated antigen presentation of tumor-derived antigens, as well as CD8+ T cell activation and tumor infiltration. Targeting BCL9/BCL9L to regulate cDC1 function and directly orchestrate a positive feedback loop necessary for optimal antitumor immunity could serve as a potential strategy to counter immune suppression and enhance cancer immunotherapy.


Subject(s)
Antigen Presentation , Dendritic Cells , Animals , Humans , Mice , Antigen Presentation/immunology , Antigen Presentation/genetics , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Dendritic Cells/immunology , Dendritic Cells/pathology , Mice, Knockout , Neoplasms/immunology , Neoplasms/genetics , Neoplasms/pathology , Receptors, Chemokine , Transcription Factors/genetics , Transcription Factors/immunology
8.
Sci Rep ; 14(1): 11320, 2024 05 17.
Article in English | MEDLINE | ID: mdl-38760435

ABSTRACT

The difference in the survival of obese patients and normal-weight/lean patients with diabetic MAFLD remains unclear. Therefore, we aimed to describe the long-term survival of individuals with diabetic MAFLD and overweight/obesity (OT2M), diabetic MAFLD with lean/normal weight (LT2M), MAFLD with overweight/obesity and without T2DM (OM), and MAFLD with lean/normal weight and without T2DM (LM). Using the NHANESIII database, participants with MAFLD were divided into four groups. Hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause, cardiovascular disease (CVD)-related, and cancer-related mortalities for different MAFLD subtypes were evaluated using Cox proportional hazards models. Of the 3539 participants, 1618 participants (42.61%) died during a mean follow-up period of 274.41 ± 2.35 months. LT2M and OT2M had higher risks of all-cause mortality (adjusted HR, 2.14; 95% CI 1.82-2.51; p < 0.0001; adjusted HR, 2.24; 95% CI 1.32-3.81; p = 0.003) and CVD-related mortality (adjusted HR, 3.25; 95% CI 1.72-6.14; p < 0.0001; adjusted HR, 3.36; 95% CI 2.52-4.47; p < 0.0001) than did OM. All-cause and CVD mortality rates in LT2M and OT2M patients were higher than those in OM patients. Patients with concurrent T2DM and MAFLD should be screened, regardless of the presence of obesity.


Subject(s)
Diabetes Mellitus, Type 2 , Obesity , Humans , Male , Female , Obesity/complications , Obesity/mortality , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/mortality , Adult , Cardiovascular Diseases/mortality , Cardiovascular Diseases/etiology , Non-alcoholic Fatty Liver Disease/mortality , Non-alcoholic Fatty Liver Disease/complications , Proportional Hazards Models , Aged , Risk Factors
9.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793240

ABSTRACT

Metal halide perovskite semiconductors have emerged as promising materials for various optoelectronic applications due to their unique crystal structure and outstanding properties. Among different forms, perovskite nanowires (NWs) offer distinct advantages, including a high aspect ratio, superior crystallinity, excellent light absorption, and carrier transport properties, as well as unique anisotropic luminescence properties. Understanding the formation mechanism and structure-property relationship of perovskite NWs is crucial for exploring their potential in optoelectronic devices. In this study, we successfully synthesized all-inorganic halide perovskite NWs with high aspect ratios and an orthorhombic crystal phase using the hot-injection method with controlled reaction conditions and surface ligands. These NWs exhibit excellent optical and electrical properties. Moreover, precise control over the halogen composition through a simple anion exchange process enables the tuning of the bandgap, leading to fluorescence emission, covering a wide range of colors across the visible spectrum. Consequently, these perovskite NWs hold great potential for efficient energy conversion and catalytic applications in photoelectrocatalysis.

10.
Materials (Basel) ; 17(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38793257

ABSTRACT

Transition metal dichalcogenides (TMDs), particularly monolayer TMDs with direct bandgap properties, are key to advancing optoelectronic device technology. WSe2 stands out due to its adjustable carrier transport, making it a prime candidate for optoelectronic applications. This study explores monolayer WSe2 synthesis via H2-assisted CVD, focusing on how carrier gas flow rate affects WSe2 quality. A comprehensive characterization of monolayer WSe2 was conducted using OM (optical microscope), Raman spectroscopy, PL spectroscopy, AFM, SEM, XPS, HRTEM, and XRD. It was found that H2 incorporation and flow rate critically influence WSe2's growth and structural integrity, with low flow rates favoring precursor concentration for product formation and high rates causing disintegration of existing structures. This research accentuates the significance of fine-tuning the carrier gas flow rate for optimizing monolayer WSe2 synthesis, offering insights for fabricating monolayer TMDs like WS2, MoSe2, and MoS2, and facilitating their broader integration into optoelectronic devices.

11.
Heliyon ; 10(7): e29354, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38623193

ABSTRACT

Several COVID-19 vaccines have been approved for emergency use according to China's immunization programs. These vaccines has created hope for patients with epilepsy, because the vaccines can help to reduce their risk of becoming infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The aim of this study was to investigate the COVID-19 vaccine safety in patients with epilepsy. Here, we assessed the time of symptom control and the features of adverse events of seizure patients following their COVID-19 vaccinations. The results showed that adverse events of COVID-19 vaccinations for epilepsy patients included local pain at the injection site, dizziness and headache, epileptic attack, somnolence, limb weakness, limb pain, allergy, and fever. In addition, the average recovery time of the adverse events was approximately 42 h. More importantly, our study showed that it was relatively safe to vaccinate epilepsy patients who did not experience seizures for approximately 12 months prior to the immunization date.

12.
Eur J Ophthalmol ; : 11206721241247585, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653578

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) frequently results in compromised visual function, with hyperglycemia-induced disruption of the blood-retinal barrier (BRB) through various pathways as a critical mechanism. Existing DR treatments fail to address early and potentially reversible microvascular alterations. This study examined the effects of empagliflozin (EMPA), a selective Sodium-glucose transporter 2 (SGLT2) inhibitor, on the retina of db/db mice. The objective of this study is to investigate the potential role of EMPA in the prevention and delay of DR. METHODS: db/db mice were randomly assigned to either the EMPA treatment group (db/db + Emp) or the model group (db/db), while C57 mice served as the normal control group (C57). Mice in the db/db + Emp group received EMPA for eight weeks. Body weight, fasting blood glucose (FBG), and blood VEGF were subsequently measured in all mice, along with the detection of specific inflammatory factors and BRB proteins in the retina. Retinal SGLT2 protein expression was compared using immunohistochemical analysis, and BRB structural changes were observed via electron microscopy. RESULTS: EMPA reduced FBG, blood VEGF, and retinal inflammatory factors TNF-α, IL-6, and VEGF levels in the eye tissues of db/db mice. EMPA also increased Claudin-1, Occludin-1, and ZO-1 levels while decreasing ICAM-1 and Fibronectin, thereby preserving BRB function in db/db mice. Immunohistochemistry revealed that EMPA reduced SGLT2 expression in the retina of diabetic mice, and electron microscopy demonstrated that EMPA diminished tight junction damage between retinal vascular endothelial cells and prevented retinal vascular basement membrane thickening in diabetic mice. CONCLUSION: EMPA mitigates inflammation and preserves BRB structure and function, suggesting that it may prevent DR or serve as an effective early treatment for DR.

13.
Int J Biol Macromol ; 267(Pt 2): 131662, 2024 May.
Article in English | MEDLINE | ID: mdl-38636754

ABSTRACT

In this study, we investigated detailedly the contribution of catechol in tuning the formation and adhesive properties of coacervates. We have constructed a series of catechol-grafted Chitosan (Chitosan-C), and investigated their coacervation with gum arabic (GA) and the corresponding adhesion. We demonstrate that, increasing catechol grafting ratio from 0 %-44 % impacted the coacervation moderately, while enhanced the adhesion of the coacervate up to 438 % when the catechol faction was 37 %. Further increasing the grafting ratio to 55 % led to precipitated coacervates associated with a declined adhesion. Our findings identify the optimal grafting threshold for coacervation and adhesion, providing insights into the underlying mechanism of coacervate binding. Moreover, the catechol enhancement on adhesion of coacervates tolerates different substrates and diverse polyelectrolyte pairs. The revealed principles shall be helpful for designing adhesive coacervates and boosting their applications in various industrial and biomedical areas.


Subject(s)
Catechols , Chitosan , Chitosan/chemistry , Catechols/chemistry , Gum Arabic/chemistry , Adhesiveness , Adhesives/chemistry
14.
Phytomedicine ; 128: 155526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38564921

ABSTRACT

BACKGROUND: Atherosclerosis (AS) is an important cause of cardiovascular disease, posing a substantial health risk. Recognized as a chronic inflammatory disorder, AS hinges on the pivotal involvement of macrophages in arterial inflammation, participating in its formation and progression. Sangzhi alkaloid (SZ-A) is a novel natural alkaloid extracted from the mulberry branches, has extensive pharmacological effects and stable pharmacokinetic characteristics. However, the effects and mechanisms of SZ-A on AS remain unclear. PURPOSE: To explore the effect and underlying mechanisms of SZ-A on inflammation mediated by macrophages and its role in AS development. METHODS: Atherosclerosis was induced in vivo in apolipoprotein E-deficient mice through a high-fat and high-choline diet. We utilized macrophages and vascular endothelial cells to investigate the effects of SZ-A on macrophage polarization and its anti-inflammatory properties on endothelial cells in vitro. The transcriptomic analyses were used to investigate the major molecule that mediates cell-cell interactions and the antiatherogenic mechanisms of SZ-A based on AS, subsequently validated in vivo and in vitro. RESULTS: SZ-A demonstrated a significant inhibition in vascular inflammation and alleviation of AS severity by mitigating macrophage infiltration and modulating M1/M2 macrophage polarization in vitro and in vivo. Moreover, SZ-A effectively reduced the release of the proinflammatory mediator C-X-C motif chemokine ligand (CXCL)-10, predominantly secreted by M1 macrophages. This reduction in CXCL-10 contributed to improved endothelial cell function, reduced recruitment of additional macrophages, and inhibited the inflammatory amplification effect. This ultimately led to the suppression of atherogenesis. CONCLUSION: SZ-A exhibited potent anti-inflammatory effects by inhibiting macrophage-mediated inflammation, providing a new therapeutic avenue against AS. This is the first study demonstrating the efficacy of SZ-A in alleviating AS severity and offers novel insights into its anti-inflammatory mechanism.


Subject(s)
Alkaloids , Atherosclerosis , Macrophages , Morus , Animals , Atherosclerosis/drug therapy , Macrophages/drug effects , Mice , Alkaloids/pharmacology , Morus/chemistry , Male , Mice, Inbred C57BL , Anti-Inflammatory Agents/pharmacology , Diet, High-Fat , Humans , RAW 264.7 Cells , Mice, Knockout, ApoE , Endothelial Cells/drug effects , Apolipoproteins E
15.
Food Chem ; 450: 139341, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38631206

ABSTRACT

The escalating use of pesticides on fruits and vegetables has raised concerns about potential health risks. Therefore, we developed a superhydrophilic resin/graphene oxide (SR/GO) with rich adsorption interactions using an eco-friendly synthetic approach. SR/GO demonstrated excellent hydrophilicity, ensuring optimal contact with aqueous sample matrices. The multiple adsorption interactions, including π-π conjugation, hydrogen bonding, and electrostatic adsorption, facilitated multi-pesticide residue co-extraction. The synthesized SR/GO was applied to a miniaturized centrifugation-accelerated pipette-tip extraction method, coupled with high-performance liquid chromatography. The optimized method exhibited low consumption (15.0 mg adsorbent), and high efficiency, with low detection limits (1.4-2.9 ng g-1) and high recoveries (75.3-113.0%). Water-compatible SR/GO, along with a miniaturized extraction process, showcases a potent analytical approach for pesticide residue analysis in fruits and vegetables. The significance of this method lies in its ability to ensure agricultural and food safety by using a low-cost and efficient multi-pesticide residue analytical strategy.


Subject(s)
Food Contamination , Fruit , Graphite , Hydrophobic and Hydrophilic Interactions , Pesticide Residues , Vegetables , Vegetables/chemistry , Graphite/chemistry , Pesticide Residues/chemistry , Pesticide Residues/analysis , Fruit/chemistry , Food Contamination/analysis , Adsorption , Chromatography, High Pressure Liquid , Green Chemistry Technology , Resins, Synthetic/chemistry
16.
Aging Dis ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38607740

ABSTRACT

Numerous bodily processes deteriorate with age, chief among them being the loss of muscle mass and function. The condition referred to as aging myasthenia gravis impairs older persons' quality of life and is linked to a higher risk of several chronic illnesses. An increasing number of studies conducted in the last several years has demonstrated that moderate exercise can halt this process. Specifically, by promoting autophagy, aerobic exercise helps to postpone the onset of senile myasthenia gravis. In this work, we will explore how aerobic exercise modulates autophagy to prevent muscle aging and examine the most recent findings in this area of study. We discovered that exercise-induced autophagy can effectively balance protein degradation and relieve skeletal muscle atrophy by looking through pertinent literature. Aerobic exercise has a direct impact on autophagy, but it can also delay the onset of senile myasthenia gravis by enhancing blood flow, lowering inflammation, and boosting muscle oxidative capacity. In order to postpone the onset of senile myasthenia gravis, research on the mechanism of action of aerobic exercise in inducing autophagy will be discussed in detail in this study.

17.
Materials (Basel) ; 17(7)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38612121

ABSTRACT

As a direct band gap semiconductor, perovskite has the advantages of high carrier mobility, long charge diffusion distance, high defect tolerance and low-cost solution preparation technology. Compared with traditional metal halide perovskites, which regulate energy band and luminescence by changing halogen, perovskite quantum dots (QDs) have a surface effect and quantum confinement effect. Based on the LaMer nucleation growth theory, we have synthesized CsPbBr3 QDs with high dimensional homogeneity by creating an environment rich in Br- ions based on the general thermal injection method. Moreover, the size of the quantum dots can be adjusted by simply changing the reaction temperature and the concentration of Br- ions in the system, and the blue emission of strongly confined pure CsPbBr3 perovskite is realized. Finally, optical and electrochemical tests suggested that the synthesized quantum dots have the potential to be used in the field of photocatalysis.

18.
Dose Response ; 22(2): 15593258241245804, 2024.
Article in English | MEDLINE | ID: mdl-38617388

ABSTRACT

Radiation therapy has been a critical and effective treatment for cancer. However, not all cells are destroyed by radiation due to the presence of tumor cell radioresistance. In the current study, we investigated the effect of low-dose radiation (LDR) on the tumor suppressive effect of high-dose radiation (HDR) and its mechanism from the perspective of tumor cell death mode and DNA damage repair, aiming to provide a foundation for improving the efficacy of clinical tumor radiotherapy. We found that LDR pre-irradiation strengthened the HDR-inhibited A549 cell proliferation, HDR-induced apoptosis, and G2 phase cell cycle arrest under co-culture conditions. RNA-sequencing showed that differentially expressed genes after irradiation contained pyroptosis-related genes and DNA damage repair related genes. By detecting pyroptosis-related proteins, we found that LDR could enhance HDR-induced pyroptosis. Furthermore, under co-culture conditions, LDR pre-irradiation enhances the HDR-induced DNA damage and further suppresses the DNA damage-repairing process, which eventually leads to cell death. Lastly, we established a tumor-bearing mouse model and further demonstrated that LDR local pre-irradiation could enhance the cancer suppressive effect of HDR. To summarize, our study proved that LDR pre-irradiation enhances the tumor-killing function of HDR when cancer cells and immune cells were coexisting.

19.
Hum Mol Genet ; 33(12): 1064-1073, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38507061

ABSTRACT

Cancer-associated fibroblasts (CAFs) are increasingly recognized as playing a crucial role in regulating cancer progression and metastasis. These cells can be activated by long non-coding RNAs (lncRNAs), promoting the malignant biological processes of tumor cells. Therefore, it is essential to understand the regulatory relationship between CAFs and lncRNAs in cancers. Here, we identified CAF-related lncRNAs at the pan-cancer level to systematically predict their potential regulatory functions. The identified lncRNAs were also validated using various external data at both tissue and cellular levels. This study has revealed that these CAF-related lncRNAs exhibit expression perturbations in cancers and are highly correlated with the infiltration of stromal cells, particularly fibroblasts and endothelial cells. By prioritizing a list of CAF-related lncRNAs, we can further distinguish patient subtypes that show survival and molecular differences. In addition, we have developed a web server, CAFLnc (https://46906u5t63.zicp.fun/CAFLnc/), to visualize our results. In conclusion, CAF-related lncRNAs hold great potential as a valuable resource for comprehending lncRNA functions and advancing the identification of biomarkers for cancer progression and therapeutic targets in cancer treatment.


Subject(s)
Cancer-Associated Fibroblasts , Carcinogenesis , Gene Expression Regulation, Neoplastic , Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , Humans , Neoplasms/genetics , Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Gene Expression Profiling , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...