Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Dev Biol ; 11: 1197239, 2023.
Article in English | MEDLINE | ID: mdl-37576595

ABSTRACT

Purpose: To develop a visual function-based deep learning system (DLS) using fundus images to screen for visually impaired cataracts. Materials and methods: A total of 8,395 fundus images (5,245 subjects) with corresponding visual function parameters collected from three clinical centers were used to develop and evaluate a DLS for classifying non-cataracts, mild cataracts, and visually impaired cataracts. Three deep learning algorithms (DenseNet121, Inception V3, and ResNet50) were leveraged to train models to obtain the best one for the system. The performance of the system was evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Results: The AUC of the best algorithm (DenseNet121) on the internal test dataset and the two external test datasets were 0.998 (95% CI, 0.996-0.999) to 0.999 (95% CI, 0.998-1.000),0.938 (95% CI, 0.924-0.951) to 0.966 (95% CI, 0.946-0.983) and 0.937 (95% CI, 0.918-0.953) to 0.977 (95% CI, 0.962-0.989), respectively. In the comparison between the system and cataract specialists, better performance was observed in the system for detecting visually impaired cataracts (p < 0.05). Conclusion: Our study shows the potential of a function-focused screening tool to identify visually impaired cataracts from fundus images, enabling timely patient referral to tertiary eye hospitals.

SELECTION OF CITATIONS
SEARCH DETAIL
...