Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(4): 4974-4986, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439235

ABSTRACT

An Hz-magnitude ultra-narrow linewidth single-frequency Brillouin fiber laser (BFL) is proposed and experimentally demonstrated. The single frequency of the laser is selected by parity-time (PT) symmetry, which consists of a stimulated Brillouin scatter (SBS) gain path excited by a 24 km single-mode fiber (SMF) and an approximately equal length loss path tuned with a variable optical attenuator (VOA). These paths are coupled through a fiber Bragg grating (FBG) into a wavelength space. Accomplishing single-frequency oscillation involves the precise adjustment of polarization control (PC) and VOA to attain the PT broken phase. In the experiment, the linewidth of the proposed BFL is 9.58 Hz. The optical signal-to-noise ratio (OSNR) reached 78.89 dB, with wavelength and power fluctuations of less than 1pm and 0.02 dB within one hour. Furthermore, the wavelength can be tuned from 1549.9321 nm to 1550.2575 nm, with a linewidth fluctuation of 1.81 Hz. The relative intensity noise (RIN) is below -74 dB/Hz. The proposed ultra-narrow single-frequency BFL offers advantages such as cost-effectiveness, ease of control, high stability and excellent output characteristics, making it highly promising for the applications in the coherent detection.

2.
Opt Express ; 32(5): 8030-8041, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439470

ABSTRACT

A voltage sensor with high resolution and large measurement range based on an optoelectronic oscillator (OEO) is proposed and experimentally demonstrated. The key component in the cavity to select the oscillating signal is a finite impulse response (FIR)-microwave photonic filter (MPF) which consists of a sinusoidal broadband optical signal, an unbalanced Mach-Zehnder interferometer (MZI), a section of dispersion compensating fiber, and a photodetector. The center frequency of the FIR-MPF is mainly determined by the free spectral range (FSR) of the FIR-MPF. In the lower arm of the MZI, a cylindrical piezoelectric ceramic (PZT) wrapped with a section of optical fiber acts as voltage sensing head. Due to the inverse piezoelectric effect of PZT, the variation of the voltage will cause radial deformation of the cylindrical PZT and then lead to the change of the FSR of the MZI, determining the shift of center frequency of FIR-MPF as well as the frequency of the oscillating signal of the OEO. Thus, by monitoring the shift of the oscillation frequency of the OEO using an electric spectrum analyzer or a digital signal processor, a high-speed interrogation and high-resolution voltage measurement can be realized. Additionally, in the proposed scheme, an infinite impulse response (IIR)-MPF consisting of a fiber ring resonator is cascaded with the FIR-MPF to ensure the single-mode oscillation of the OEO. The experimental results show that a total range of 1700 V voltage sensing from - 200 V to 1500 V is accomplished with the voltage sensitivity of 0.25 GHz/100 V and the resolution of 0.3 V. By adjusting the proportion of the length of single mode fiber between two branches of MZI, the impact of temperature can be greatly reduced. The proposed sensor offers advantages such as a large measurement range, high resolution, high-speed interrogation, and stability to temperature disturbances, making it highly suitable for sensing applications in smart grids.

3.
Opt Express ; 31(20): 33003-33014, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859089

ABSTRACT

A simultaneous magnetic field and temperature sensing scheme based on cascaded microwave photonic filters (MPFs) with high resolution is proposed and experimentally demonstrated. A polarization maintaining fiber bonded with a giant magnetostrictive material acts both as a magnetic field sensing probe and an important unit of a dispersion-induced MPF. A 500 m single mode fiber in a two-tap MPF is used to perform temperature compensation. The power fading frequency of the dispersion-induced MPF and the dip frequency of the two-tap MPF are selected to monitor the magnetic field and temperature changes. When temperature changes, both power fading frequency and dip frequency will change. While only power fading frequency shifts as magnetic field changes. Consequently, dual parameter sensing can be achieved by monitoring the characteristic microwave frequencies of the two MPFs. The temperature cross-sensitivity is well resolved in this way. In the experiment, the microwave frequency changes 5.84 MHz as external magnetic field increases by 1 mT. The corresponded theoretical resolution can reach 0.17 nT, which is only limited by the minimum resolution of vector network analyzer.

4.
Appl Opt ; 62(26): 6924-6930, 2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37707031

ABSTRACT

In this paper, a photonic-assisted system for simultaneous and unambiguous measurement of the Doppler frequency shift (DFS) and angle-of-arrival (AOA) using a dual-parallel dual-drive Mach-Zehnder modulator (DP-DDMZM) is proposed and investigated. The echo signals received by two receiving antennas are applied to the radio frequency ports of one sub-DDMZM of the DP-DDMZM. The bias port of the sub-DDMZM is fed by a binary electrical signal that is used to construct two different mapping curves on the relationship between the phase difference and the power of the output intermediate frequency (IF) signal. Therefore, unambiguous AOA measurement with extended range can be realized. The transmitted signal is input into the other sub-DDMZM to implement single-sideband modulation, which is then frequency shifted based on serrodyne modulation. Both the value and direction of DFS can be derived intuitively from the frequency of the output IF signal. Simulation results show that the measurement error of unambiguous DFS measurement is no more than ±0.008H z in the range of -100k H z to 100 kHz, and the measurement error of unambiguous AOA is less than ±0.2∘ in the range of -70.8∘ to 70.8°. Moreover, since the scheme does not involve the construction of multi-channels or use of any filter or polarization dependent device, the system has concise structure, high accuracy, large operating bandwidth, and strong robustness, and can be considered as a very promising solution for actual applications.

5.
Sensors (Basel) ; 23(18)2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37765995

ABSTRACT

In this paper, we propose and design a magnetic field and temperature sensor using a novel petaloid photonic crystal fiber filled with magnetic fluid. The PCF achieves a high birefringence of more than 1.43 × 10-2 at the wavelength of 1550 nm via the design of material parameters, air hole shape and the distribution of the photonic crystal fiber. Further, in order to significantly improve the sensitivity of the sensor, the magnetic-fluid-sensitive material is injected into the pores of the designed photonic crystal fiber. Finally, the sensor adopts a Mach-Zehnder interferometer structure combined with the ultra-high birefringence of the proposed petaloid photonic crystal fiber. Magnetic field and temperature can be simultaneously measured via observing the spectral response of the x-polarization state and y-polarization state. As indicated via simulation analysis, the sensor can realize sensitivities to magnetic fields and temperatures at -1.943 nm/mT and 0.0686 nm/°C in the x-polarization state and -1.421 nm/mT and 0.0914 nm/°C in the y-polarization state. The sensor can realize the measurement of multiple parameters including temperature and magnetic intensity and has the advantage of high sensitivity.

6.
Opt Lett ; 48(16): 4272-4275, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37582010

ABSTRACT

A novel photonic method for multi-format chirped signal generation with a high switching rate based on a dual-polarization binary phase shift keying (DP-BPSK) modulator is proposed and demonstrated. An up-chirp signal and a binary code signal are used to drive one of the sub-dual-drive Mach-Zehnder modulators (sub-DDMZMs) integrated in the DP-BPSK modulator. Another integrated sub-DDMZM is driven by a down-chirp signal and another binary code signal. By carefully tuning the DC biases of the DP-BPSK modulator, the format of the output chirped signal is controlled by the binary code signals. A proof-of-concept experiment is performed and multi-format chirped signals with a high switching rate are generated. Due to the high switching rate, simple structure, and high adjustability, the proposed multi-format chirped signal generator may find potential applications in multifunctional radar systems, wireless communication systems, and dual-function radar-communication systems.

7.
Opt Lett ; 48(8): 2122-2125, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-37058657

ABSTRACT

An optical amplification-free deep reservoir computing (RC)-assisted high-baudrate intensity modulation direct detection (IM/DD) system is experimentally demonstrated using a 100G externally modulated laser operated in C-band. We transmit 112 Gbaud 4-level pulse amplitude modulation (PAM4) and 100 Gbaud 6-level PAM (PAM6) signals over a 200-m single-mode fiber (SMF) link without any optical amplification. The decision feedback equalizer (DFE), shallow RC, and deep RC are adopted in the IM/DD system to mitigate impairment and improve transmission performance. Both PAM transmissions over a 200-m SMF with bit error rate (BER) performance below 6.25% overhead hard-decision forward error correction (HD-FEC) threshold are achieved. In addition, the BER of the PAM4 signal is below the KP4-FEC limit after 200-m SMF transmission enabled by the RC schemes. Thanks to the use of a multiple-layer structure, the number of weights in deep RC has been reduced by approximately 50% compared with the shallow RC, whereas the performance is comparable. We believe that the optical amplification-free deep RC-assisted high-baudrate link has a promising application in intra-data center communications.

8.
Opt Express ; 30(26): 47515-47527, 2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36558679

ABSTRACT

An approach for simultaneous modulation format identification (MFI) and optical signal-to-noise ratio (OSNR) monitoring in digital coherent optical communications is proposed based on optoelectronic reservoir computing (RC) and the signal's amplitude histograms (AHs) obtained after the adaptive post-equalization. The optoelectronic RC is implemented using a Mach-Zehnder modulator and optoelectronic delay feedback loop. We investigate the performance of the proposed model with the number of symbols, bins of AHs and the hyperparameters of optoelectronic RC. The results show that 100% MFI accuracy can be achieved simultaneously with accurate OSNR estimation for different modulation formats under study. The lowest achievable OSNR estimation mean absolute errors for the dual-polarization (DP)-quadrature phase-shift keying signal, the DP-16-ary quadrature amplitude modulation (16QAM) signal, and the DP-64QAM signal are 0.2 dB, 0.32 dB and 0.53 dB, respectively. The robustness of the proposed scheme is also evaluated when the optoelectronic RC is in presence of additive white Gaussian noises. Then, a proof of concept experiment is demonstrated to further verify our proposed method. The proposed approach offers a potential solution for next-generation intelligent optical performance monitoring in the physical layer.

9.
Opt Express ; 30(20): 36073-36086, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36258544

ABSTRACT

High-performance demodulation of Sagnac effect is of great importance for rotation rate measurement in inertial navigation system. In this paper, we propose a flexible measurement of rotation rate based on a phase-controlled microwave photonic filter (MPF), which incorporates an orthogonal double-sideband (ODSB) modulator, a Sagnac loop, a linearly chirped fiber Bragg grating (LCFBG), a polarizer, and a photodetector. The ODSB modulator is used to generate optical carrier (OC) and first-order sidebands with mutually orthogonal polarizations. For the MPF, its central frequency can be tuned through changing the phase difference between the OC and first-order sidebands thanks to the dispersion of the LCFBG. Therefore, if the OC and first-order sidebands are separated by a polarization beam splitter and then travel along the Sagnac loop in opposite directions, the rotation-induced phase difference between them will lead to a shift on the frequency response of the MPF. Thus, two ways can be adopted to detect the rotation rate of the Sagnac loop for different applications: monitoring the frequency response shift of the MPF and measuring the power variation at a certain frequency. Besides, the measurement sensitivity can be easily adjusted to satisfy specific requirements by tuning a polarization controller or choosing a different operating frequency. An experiment is performed to validate the proposed scheme. The results show that the maximum frequency shift of the MPF can reach 1.7 GHz at a rotation rate of 1 rad/s, and a scale factor of 0.016 mW/(rad/s) is obtained at 4 GHz.

10.
Appl Opt ; 61(12): 3473-3479, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35471444

ABSTRACT

Time-delayed reservoir computing (RC) is a brain inspired paradigm for processing temporal information, with simplification in the network's architecture using virtual nodes embedded in a temporal delay line. In this work, a novel, to the best of our knowledge, RC system based on a dual-loop optoelectronic oscillator is proposed to enhance the prediction and classification. The hardware is compact and easy to implement, and only a section of fiber compared to the traditional optoelectronic oscillator reservoir is added to conform the dual-loop scheme. Compared with the traditional reservoir, a remarkable performance of the proposed RC system is demonstrated by simulation on three well-known tasks, namely the nonlinear auto regressive moving average (NARMA10) task, signal waveform recognized task, and handwritten numeral recognition. The parameter optimization in the NARMA10 task is presented with influenced factors. The novel RC system finally obtains a normalized mean square error at 0.0493±0.007 in NARMA10 task, 6.172×10-6 in signal waveform recognized task, and a word error rate at 9% in handwritten numeral recognition with suitable parameters.


Subject(s)
Neural Networks, Computer , Semiconductors , Computer Simulation
11.
Opt Lett ; 47(2): 413-416, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35030619

ABSTRACT

The active mode-locking (AML) technique has been widely used in erbium-doped fiber lasers to generate picosecond pulse trains. Here we propose a novel active mode-locking dual-loop optoelectronic oscillator (AML-DL-OEO), which can generate microwave frequency comb (MFC) signals with adjustable comb spacings. Based on this scheme, the order of harmonic mode-locking is dramatically decreased for a certain AML driving frequency compared with a single-loop AML-OEO. Thus, the supermode noise caused by harmonic mode-locking can be efficiently suppressed. In addition, the sidemodes are well suppressed by the dual-loop architecture. An experiment is performed. MFC signals with different comb spacings are generated under fundamental or harmonic mode-locking states. AML-DL-OEO systems with different length differences between two loops are implemented to evaluate supermode noise suppression capability. The performance of the generated MFC signals is recorded and analyzed.

12.
Appl Opt ; 61(33): 9860-9867, 2022 Nov 20.
Article in English | MEDLINE | ID: mdl-36606816

ABSTRACT

In this paper, we propose and demonstrate a novel, to the best of knowledge, filter-free photonics-assisted microwave frequency translator with a tunable phase shift and amplitude. The pivotal component of the proposed scheme is an integrated dual-polarization quadrature phase shift keying (DP-QPSK) modulator, which is applied to generate a polarization orthogonal carrier-suppressed single sideband modulation signal and frequency shifted optical carrier signal. The polarization-multiplexed optical signal outputs from the DP-QPSK modulator is then sent to a photodetector (PD) via a polarization controller (PC) and a polarizer to implement photoelectric conversion. The electrical signal output from the PD is the desired frequency translated microwave signal, and the amount of frequency shift is determined by the frequency of the sawtooth wave applied to the DP-QPSK modulator. In addition, since the PC can be used to adjust the polarization angle and introduce a phase difference between the two orthogonally polarized optical signals, the phase shift and amplitude of the obtained translated signal can also be easily tuned. A theoretical analysis and simulation experiment are carried out to verify the feasibility of the proposed scheme. The simulation results show that the novel scheme can realize frequency translation with a 360° continuously tunable phase shift and adjustable amplitude for both a single-tone signal and linearly frequency modulated signal with a 50 MHz bandwidth. The spurious suppression ratios of the single-tone signal and LFM signal after frequency translation are larger than 48 and 30 dB, respectively.

13.
Opt Express ; 29(24): 38989-39000, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809271

ABSTRACT

An optoelectronic oscillator (OEO)-based fiber optic current sensor (FOCS) with greatly improved sensitivity is proposed and experimentally demonstrated. A microwave photonic filter (MPF) induced by the dispersion effect of a linearly chirped fiber Bragg grating (LCFBG) is used to select the frequency of the OEO oscillating signal. A two-tap MPF formed by a polarization multiplexed composite cavity is cascaded to achieve a stable single mode oscillation. When the current changes, the magneto-optic phase shift induced by Faraday effect will be introduced between the left and right circularly polarized lights transmitted in the reflective sensing unit. The magneto-optic phase shift is converted to the phase difference between the optical carrier and sidebands through a LiNbO3 Mach-Zehnder modulator. This phase difference is the decisive factor for the center frequency of the cascaded MPF as well as the oscillating frequency. Therefore, the current can be measured in the microwave frequency domain, which can improve the interrogation speed and accuracy to a large extent. The experimental results show that the oscillating frequency shifts up to 407.9 MHz as the current increases by 1 A.

14.
Appl Opt ; 60(27): 8579-8587, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34612961

ABSTRACT

A multiband radio-over-fiber system for a fifth-generation (5G) mobile communication technology mobile fronthaul network is proposed, which can transmit radio frequency (RF) signals in four different frequency bands of 700 MHz, 1.8 GHz, 3.5 GHz, and 26 GHz with different data rates simultaneously. The proposed system can satisfy the multiscenario demand of 5G and realize 4G/5G coexistence. A dual-polarization binary phase-shift keying modulator is utilized to alleviate the interference between multiple-frequency bands. The system is analyzed theoretically and verified through simulation. The variations of error vector magnitudes (EVMs) of four transmitted RF signals in function of the received optical power (ROP) are investigated. The simulation results show that the system has good performance after 10 km standard single-mode fiber (SMMF) transmission. When the ROP is above -3.3dBm, the EVM of the system conforms to the 3GPP specification. The power penalty of the system is within 1.9 dB at the 3GPP EVM performance specification after transmitting over a 10 km SSMF.

15.
Opt Lett ; 46(15): 3753-3756, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34329273

ABSTRACT

This Letter presents a novel, to the best of our knowledge, linearized analog photonic link (APL) based on a phase-coherent orthogonal light wave generator that consists of a polarization-dependent Mach-Zehnder modulator (MZM) and a polarization controller (PC). By adjusting the PC and bias voltage of MZM, the third-order intermodulation (IMD3) terms can be suppressed while retaining a high gain for the fundamental terms, which indicates that the spurious free dynamic range (SFDR) of the proposed APL can be much improved. To further verify the feasibility of the proposed APL, a proof-of-concept experiment is performed, and the performances are compared with conventional APL. The experimental results demonstrate that a 14 dB improvement in the fundamental to IMD3 power ratio and an SFDR of 100.2dB⋅Hz2/3 or 119.1dB⋅Hz2/3 for a noise floor of -139dBm/Hz or -163.9dBm/Hz are achieved. In addition, an orthogonal frequency division multiplexing signal with 30 MHz bandwidth centered at 2.5 GHz is delivered by our proposed APL, whose signal-to-noise ratio is increased by 10 dB, compared to conventional APL.

16.
Opt Express ; 29(9): 13530-13541, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33985086

ABSTRACT

A temperature self-calibrated potential of hydrogen (pH) sensor based on the single mode fiber-tapered dual core photonic crystal fiber-single mode fiber (SMF-TDCPCF-SMF) structure cascaded with a fiber Bragg grating (FBG) is proposed and demonstrated. The TDCPCF structure formed Mach-Zehnder interferometer (MZI) is modified with a coating of graphene oxide/polyvinyl alcohol (GO/PVA) hybrid hydrogel to realize the measurement of pH, and the uncoated FBG is used to calibrate temperature. In our experiment, the sensitivity coefficient of 0.69 nm/pH with R2=0.99 and the hysteresis loss of less than 0.007 are achieved within the pH range from pH 4.00 to pH 9.85. The measured response time from pH 7.00 to pH 4.00, 6.00 and 9.85 are no higher than 10s. Moreover, the resonant wavelengths of MZI and FBG also exhibit good linear relationship with the temperature sensitivity coefficient of 0.15 nm/°C (R2=0.99) and 0.09 nm/°C (R2=0.97) respectively. It is demonstrated successfully that the proposed sensor has broad application prospects in the field of environmental monitoring, biological sensing and chemical analysis, due to the good performance of the temperature self-calibrated pH monitoring, repeatability, linearity, response time and reversibility.

17.
Opt Lett ; 45(16): 4519-4522, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32796998

ABSTRACT

A novel, to the best of our knowledge, interrogation scheme based on an optoelectronic oscillator (OEO) with high sensitivity and high speed response for a fiber optical current sensor utilizing a reflective interferometer is proposed and experimentally demonstrated. Due to the Faraday effect, a magneto-optic phase shift induced by current variation is generated between two orthogonal light waves. The polarization-dependent properties of the Mach-Zehnder modulator are used to convert the magneto-optic phase shift into the phase difference between the optical carrier and sideband, which is then mapped to the oscillating frequency shift by closing an OEO loop. A high current sensitivity of 152.5 kHz/A with a range of 0-2.5 A is obtained in the experiment.

18.
Opt Lett ; 44(21): 5194-5197, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31674966

ABSTRACT

A scheme of angular velocity measurement with an improved scale factor is proposed and experimentally demonstrated based on the joint operation of a Sagnac loop and an optoelectronic oscillator (OEO). In this scheme, the Sagnac-induced phase difference is mapped into the oscillating frequency shift of the OEO with a large scale factor by making one of the two counter-propagating signals in the Sagnac loop carrier-suppressed modulated and the other just travel through the modulator. The cascaded Sagnac loop and OEO structure can further improve the scale factor by setting a long Sagnac loop and a short OEO loop independently. A sensitivity scale factor as high as 742 kHz/(rad/s) is obtained in our experiment.

19.
Opt Lett ; 44(2): 379-382, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30644904

ABSTRACT

A real-time random grating sensor array for quasi-distributed sensing based on spectral-shaping and wavelength-to-time (SS-WTT) mapping and time-division multiplexing is proposed and experimentally demonstrated. The sensor array consists of multiple random gratings written in a single-mode fiber (SMF) at different physical locations. When the temperature or strain applied to a particular random grating is changed, the central wavelength of the reflection spectrum of the random grating will change, which is converted to the time domain as a time shift based on SS-WTT using a linearly chirped fiber Bragg grating. After detection at a photodetector, an electrical waveform with the time shift information encoded in the random waveform is obtained, which is further compressed by correlation to increase the time resolution. As a demonstration, a real-time quasi-distributed sensing system based on a two-random-grating array is implemented. The results show that the sensing resolutions for temperature and strain are 0.23°C and 2.5 µÏµ, respectively, and the accuracies for temperature and strain are 0.11°C and 1.2 µÏµ, respectively. Compared with a conventional quasi-distributed sensor, our proposed sensing system has key advantages, including real-time sensing, high-resolution interrogation, and large scalability.

20.
Opt Express ; 27(1): 252-264, 2019 Jan 07.
Article in English | MEDLINE | ID: mdl-30645372

ABSTRACT

A novel differential intensity-measurement high-sensitivity refractive index (RI) sensor based on cascaded dual-wavelength fiber laser and single-mode-no-core-hollow-core-no-core-single-mode (SNHNS) structure is proposed and demonstrated. The sensing unit consists of one uniform fiber Bragg grating (FBG) and an SNHNS structure as all-fiber interferometer filter. The dual-wavelength fiber laser has a ring cavity composed of two FBGs with central wavelengths of 1550.10nm and 1553.61nm. Through monitoring the wavelength shift and the output power difference of the dual-wavelength fiber laser, the simultaneous measurement for RI and temperature is realized. In our experiment, the proposed fiber laser sensor exhibits high RI sensitivities of -193.1dB/RIU and 174.8dB/RIU in the range of 1.334-1.384. The relative variation of output power at the two FBG wavelengths shows a higher RI sensitivity of -367.9dB/RIU with better stability, which is greater than the traditional modal interferometer structure. Meanwhile, the temperature sensitivity of the proposed sensor is 8.53 × 10-3nm/°C, and the changes of laser output power caused by temperature are -0.223dB/°C and 0.215dB/°C.

SELECTION OF CITATIONS
SEARCH DETAIL
...