Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Prot ; 83(6): 951-958, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32428932

ABSTRACT

ABSTRACT: Biofilms on the surface of food processing equipment act as potential reservoirs of microbial contamination. Bacterial interactions are believed to play key roles in both biofilm formation and antimicrobial tolerance. In this study, Aeromonas hydrophila, Chryseobacterium oncorhynchi, and Pseudomonas libanensis, which were previously isolated from Chinese raw milk samples, were selected to establish two dual-species biofilm models (P. libanensis plus A. hydrophila and P. libanensis plus C. oncorhynchi) on stainless steel at 7°C. Subsequently, three disinfectants, hydrogen peroxide (100 ppm), peracetic acid (100 ppm), and sodium hypochlorite (100 ppm), were used to treat the developed sessile communities for 10 min. Structural changes after exposure to disinfectants were analyzed with confocal laser scanning microscopy. The cell numbers of both A. hydrophila and C. oncorhynchi recovered from surfaces increased when grown as dual species biofilms with P. libanensis. Dual-species biofilms were more tolerant of disinfectants than were each single-species biofilm. Peracetic acid was the most effective disinfectant for removing biofilms, followed by hydrogen peroxide and sodium hypochlorite. The results expand the knowledge of mixed-species biofilms formed by psychrotrophic bacteria and will be helpful for developing effective strategies to eliminate bacterial mixed-species biofilms.


Subject(s)
Disinfectants , Bacteria , Biofilms , Chryseobacterium , Disinfectants/pharmacology , Pseudomonas
2.
J Food Prot ; 82(7): 1148-1159, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31225978

ABSTRACT

HIGHLIGHTS: Levels of psychrotrophic bacteria in raw milk are affected by to habitats and farm hygiene. Biofilms formed by psychrotrophic bacteria are persistent sources of contamination. Heat-stable enzymes produced by psychrotrophic bacteria compromise product quality. Various strategies are available for controlling dairy spoilage caused by psychrotrophic bacteria.


Subject(s)
Bacteria , Food Microbiology , Milk , Raw Foods , Animals , Bacteria/enzymology , Biofilms , Hot Temperature , Milk/microbiology , Raw Foods/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...