Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Netw ; 177: 106401, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38805793

ABSTRACT

Fluid motion can be considered as a point cloud transformation when using the SPH method. Compared to traditional numerical analysis methods, using machine learning techniques to learn physics simulations can achieve near-accurate results, while significantly increasing efficiency. In this paper, we propose an innovative approach for 3D fluid simulations utilizing an Attention-based Dual-pipeline Network, which employs a dual-pipeline architecture, seamlessly integrated with an Attention-based Feature Fusion Module. Unlike previous methods, which often make difficult trade-offs between global fluid control and physical law constraints, we find a way to achieve a better balance between these two crucial aspects with a well-designed dual-pipeline approach. Additionally, we design a Type-aware Input Module to adaptively recognize particles of different types and perform feature fusion afterward, such that fluid-solid coupling issues can be better dealt with. Furthermore, we propose a new dataset, Tank3D, to further explore the network's ability to handle more complicated scenes. The experiments demonstrate that our approach not only attains a quantitative enhancement in various metrics, surpassing the state-of-the-art methods, but also signifies a qualitative leap in neural network-based simulation by faithfully adhering to the physical laws. Code and video demonstrations are available at https://github.com/chenyu-xjtu/DualFluidNet.


Subject(s)
Computer Simulation , Neural Networks, Computer , Hydrodynamics , Machine Learning , Algorithms , Attention/physiology
2.
Philos Trans R Soc Lond B Biol Sci ; 378(1876): 20210504, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36934745

ABSTRACT

One landmark application of evolutionary game theory is the study of social dilemmas. This literature explores why people cooperate even when there are strong incentives to defect. Much of this literature, however, assumes that interactions are symmetric. Individuals are assumed to have the same strategic options and the same potential pay-offs. Yet many interesting questions arise once individuals are allowed to differ. Here, we study asymmetry in simple coordination games. In our set-up, human participants need to decide how much of their endowment to contribute to a public good. If a group's collective contribution reaches a pre-defined threshold, all group members receive a reward. To account for possible asymmetries, individuals either differ in their endowments or their productivities. According to a theoretical equilibrium analysis, such games tend to have many possible solutions. In equilibrium, group members may contribute the same amount, different amounts or nothing at all. According to our behavioural experiment, however, humans favour the equilibrium in which everyone contributes the same proportion of their endowment. We use these experimental results to highlight the non-trivial effects of inequality on cooperation, and we discuss to which extent models of evolutionary game theory can account for these effects. This article is part of the theme issue 'Half a century of evolutionary games: a synthesis of theory, application and future directions'.


Subject(s)
Cooperative Behavior , Game Theory , Humans , Motivation , Biological Evolution , Reward
3.
Front Plant Sci ; 13: 929140, 2022.
Article in English | MEDLINE | ID: mdl-35783969

ABSTRACT

The magnetized water and fertilizer liquid can produce biological effect of magnetic field on crops, but its residual magnetic field strength is difficult to be expressed quantitatively in real time, and accurate prediction of it is helpful to define the scope of action of liquid magnetization. In this paper, a prediction model for liquid magnetization series data is presented. It consists of conditional generative adversarial network (CGAN) and projected gradient descent (PGD) algorithm. First, the real training dataset is used as the input of PGD attack algorithm to generate antagonistic samples. These samples are added to the training of CGAN as true samples for data enhancement. Second, the training dataset is used as both the generator and discriminator input of CGAN to constrain the model, capture distribution of the real data. Third, a network model with three layers of CNN is built and trained inside CGAN. The input model is constructed by using the structure of two-dimensional convolution model to predict data. Lastly, the performance of the model is evaluated by the error between the final generated predicted value and the real value, and the model is compared with other prediction models. The experimental results show that, with limited data samples, by combining PGD attack with CGAN, the distribution of the real data can be more accurately captured and the data can be generated to meet the actual needs.

4.
Plant Methods ; 17(1): 119, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34819082

ABSTRACT

BACKGROUND: Due to the high cost of data collection for magnetization detection of media, the sample size is limited, it is not suitable to use deep learning method to predict its change trend. The prediction of physical and chemical properties of magnetized water and fertilizer (PCPMWF) by meta-learning can help to explore the effects of magnetized water and fertilizer irrigation on crops. METHOD: In this article, we propose a meta-learning optimization model based on the meta-learner LSTM in the field of regression prediction of PCPMWF. In meta-learning, LSTM is used to replace MAML's gradient descent optimizer for regression tasks, enables the meta-learner to learn the update rules of the LSTM, and apply it to update the parameters of the model. The proposed method is compared with the experimental results of MAML and LSTM to verify the feasibility and correctness. RESULTS: The average absolute percentage error of the meta-learning optimization model of meta-learner LSTM is reduced by 0.37% compared with the MAML model, and by 4.16% compared with the LSTM model. The loss value of the meta-learning optimization model in the iterative process drops the fastest and steadily compared to the MAML model and the LSTM model. In cross-domain experiments, the average accuracy of the meta-learning optimized model can still reach 0.833. CONCLUSIONS: In the case of few sample, the proposed model is superior to the traditional LSTM model and the basic MAML model. And in the training of cross-domain datasets, this model performs best.

5.
IEEE Trans Image Process ; 30: 3720-3733, 2021.
Article in English | MEDLINE | ID: mdl-33705318

ABSTRACT

Thanka murals are important cultural heritages of Tibet, but many precious murals were damaged during history. Thanka mural restoration is very important for the protection of Tibetan cultural heritage. Partial convolution has great potential for Thanka mural restoration due to its outstanding performance for inpainting irregular holes. However, three challenges prevent the existing partial convolution-based methods from solving Thanka restoration problems: 1) the features of multi-scale objects in Thanka murals cannot be extracted correctly because of single-scale partial convolution; 2) the stroke-like Thanka inpainting mode cannot be effectively simulated and learned by existing rectangular or arbitrary masks; and 3) the original content of damaged Thanka murals cannot be restored. To resolve these problems, we propose a Thanka mural inpainting method based on multi-scale adaptive partial convolution and stroke-like masks. The proposed method consists of three parts: 1) a kernel-level multi-scale adaptive partial convolution (MAPConv) to accurately discriminate valid pixels from invalid pixels, and to extract the features of multi-scale objects; 2) a parameter-configurable stroke-like mask generation method to simulate and learn the stroke-like Thanka inpainting mode; and 3) a 2-phase learning framework based on MAPConv Unet and different loss functions to restore the original content of Thanka murals. Experiments on both simulated and real damages of Thanka murals demonstrated that our approach works well on a small dataset (N=2780), generates realistic mural content, and restores the damaged Thanka murals with high speed (600 ms for multiple holes in 512×512 images). The proposed end-to-end method can be applied to other small datasets-based inpainting tasks.

SELECTION OF CITATIONS
SEARCH DETAIL
...