Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Bioorg Chem ; 131: 106337, 2023 02.
Article in English | MEDLINE | ID: mdl-36603244

ABSTRACT

With the soaring number of multidrug-resistant bacteria, it is imperative to develop novel efficient antibacterial agents and discovery new antibacterial pathways. Herein, we designed and synthesized a series of structurally novel glycyrrhetinic acid (GA) derivatives against multidrug-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of these compounds was evaluated using the microbroth dilution method, agar plate coating experiments and real-time growth curves, respectively. Most of the target derivatives showed moderate antibacterial activity against Staphylococcus aureus (S. aureus) and MRSA (MIC = 3.125-25 µM), but inactivity against Escherichia coli (E. Coli) and Pseudomonas aeruginosa (P. aeruginosa) (MIC > 200 µM). Among them, compound 11 had the strongest antibacterial activity against MRSA, with an MIC value of 3.125 µM, which was 32 times and 64 times than the first-line antibiotics penicillin and norfloxacin, respectively. Additionally, transcriptomic (RNA-seq) and quantitative polymerase chain reaction (qPCR) analysis revealed that the antibacterial mechanism of compound 11 was through blocking the arginine biosynthesis and metabolic and the H2S biogenesis. Importantly, compound 11 was confirmed to have good biocompatibility through the in vitro hemolysis tests, cytotoxicity assays and the in vivo quail chicken chorioallantoic membrane (qCAM) experiments. Current study provided new potential antibacterial candidates from glycyrrhetinic acid derivatives for clinical treatment of MRSA infections.


Subject(s)
Anti-Bacterial Agents , Arginine , Drug Design , Glycyrrhetinic Acid , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Anti-Bacterial Agents/pharmacology , Arginine/biosynthesis , Escherichia coli/drug effects , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Hydrogen Sulfide/metabolism
2.
Zhongguo Zhong Yao Za Zhi ; 47(22): 6066-6075, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36471931

ABSTRACT

The present study aimed to explore the material basis of Rhei Radix et Rhizoma-Coptidis Rhizoma combination in alleviating "bitter-cold" properties based on the supramolecular chemistry of Chinese medicine.Dynamic light scattering and scanning/transmission electron microscopy were used to characterize the morphological characteristics of supramolecules in the decoction of Rhei Radix et Rhizoma and Coptidis Rhizoma.The chemical composition of supramolecules, as well as the dissolution and release processes of supramolecules and the medicinal components of Coptidis Rhizoma decoction, was determined by the high-performance liquid chromatography-mass spectrometry.The differences in "bitter-cold" medicinal properties between Rhei Radix et Rhizoma decoction, Coptidis Rhizoma decoction, and co-decoction were analyzed by sensory evaluation, electronic tongue, mouse diarrhea model, and pathological indicators.The anthraquinones/tannins and alkaloids interacted to form supramolecules with a scale of about 400 nm when Rhei Radix et Rhizoma and Coptidis Rhizoma were decocted together, which delayed the dissolution and release of the active components represented by berberine. Compared with the consequence of single drug administration at 4 g·kg~(-1), the combination of the two drugs at 8 g·kg~(-1) significantly alleviated the "bitter-cold" properties.The effective components interacted to form supramolecules in the co-decoction of Rhei Radix et Rhizoma and Coptidis Rhizoma, which affected the dissolution and release of the effective components of Chinese medicinal decoction, thereby alleviating the "bitter-cold" properties.The findings of this study provide a new idea for revealing the scientific compatibility of Rhei Radix et Rhizoma and Coptidis Rhizoma.


Subject(s)
Antineoplastic Agents , Drugs, Chinese Herbal , Mice , Animals , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Rhizome/chemistry , Anthraquinones/analysis , Chromatography, High Pressure Liquid/methods
3.
Bioorg Chem ; 128: 106066, 2022 11.
Article in English | MEDLINE | ID: mdl-35964500

ABSTRACT

Podophyllotoxin's undifferentiated cytotoxicity and poor selectivity limit its clinical application. To improve above disadvantages, conjugation of bile acids with podophyllotoxin could improve cell line selectivity of liver cancer to achieve clinical translation further. Enlightened by the bile acids' moiety magic characters, thirty podophyllotoxin-linked bile acid derivatives had been designed and synthesized. The cytotoxicity of these compounds in vitro was evaluated on HepG2, HCT-116, A549 and MDCK cell lines. After conjunction with bile acids, most of the derivatives (IC50 = 0.066-0.831 µM) were more potent against above three types of tumor cells than Etoposide (VP-16, IC50 = 4.319-41.080 µM) and exhibited similar antitumor activity compared with doxorubicin (DOX, IC50 = 0.230-0.745 µM). Moreover, structure-activity relationship displayed the length of the linker chain between podophyllotoxin and bile acids affected the cytotoxicity. Especially, compound 23 exhibited strong activity against HepG2 cell lines (IC50 = 0.188 ± 0.01 µM) than MDCK cell lines (IC50 = 4.780 ± 0.50 µM) and its SI (IC50MDCK/IC50HepG2) value of compound 23 was 25.4. Further antitumor mechanism studies showed that compound 23 acted as Topo Ⅱ inhibition and induced cell apoptosis with S cell cycle arrest. In particular, compound 23 showed valid antitumor efficacy at 10 mg/kg by intraperitoneal administration with a tumor inhibition rate of 60.9% in the Hepa1-6 xenograft mice model. The current research displayed that introduction of bile acids contributed to improve selectivity and activity to cell, and compound 23 could be a promising anti-tumor candidate.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Bile Acids and Salts/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Etoposide/pharmacology , Glucosides/pharmacology , Humans , Mice , Molecular Structure , Podophyllotoxin , Structure-Activity Relationship
4.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2699-2709, 2021 Jun.
Article in Chinese | MEDLINE | ID: mdl-34296566

ABSTRACT

The cross combination of dry-method(network pharmacology analysis) and wet-method(high-resolution mass spectro-metry with antioxidation experiment) was used to predict antioxidant quality markers(Q-markers) of Hippophae tibetana. Ultra-high performance liquid chromatography coupled with hybrid quadrupole-orbitrap mass spectrometry(UPLC-Q-Exactive Orbitrap-MS) was developed to rapidly separate and identify the chemical constituents in H. tibetana. Then in DPPH free radicals and superoxide anion scavenging experiment, the antioxidant activity of the four different polar parts with extracts of petroleumether, ethyl acetate, n-butanol and water was evaluated. Network pharmacology method was used for functional enrichment and pathway analysis to screen antioxidant-related components and preliminarily explain the mechanism of action. On this basis, multi-source information was integrated to predict the antioxidant Q-markers. The results showed that 51 components in H. tibetana were identified, including 18 flavonoids, 14 terpenoids, 6 alkaloids, 4 coumarins and phenylpropanoids, 3 volatile components and 2 polyphenols. The antioxidant capacity of different fractions: ethyl acetate > n-butanol > water > petroleum ether. The medicine mainly acted on PI3 K-Akt and FoxO signaling pathways to perform antioxidant effects through flavonoids such as quercetin, luteolin and kaempferol. According to the results of dry-method and wet-method, quercetin, luteolin and kaempferol, the representatives of poly-hydroxy flavone, may be the antioxidant Q-markers of H. tibetana. In this study, with the antioxidant Q-markers of H. tibetana as an example, an investigation model of predicting Q-marker was discussed based on the ternary system of composition, function and informatics, providing a scientific basis for the establishment of quality evaluation standards for H. tibetana.


Subject(s)
Antioxidants , Hippophae , Chromatography, High Pressure Liquid , Mass Spectrometry , Technology
5.
Vet Parasitol ; 291: 109326, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33545560

ABSTRACT

Parabronemosis is a disease that severely threatens camel health, causing huge economic losses to industries involved in camel husbandry. Previous studies have reported that horn flies (Haematobia irritans) act as intermediate hosts of Parabronema skrjabini; however, the infection and developmental processes of P. skrjabini in horn flies remain unclear. In the present study, the infection rates of P. skrjabini were determined in morphologically and molecularly identified horn flies collected from Bactrian camels (Camelus bactrianus) producing regions in Inner Mongolia, China that have high P. skrjabini infection rates. The horn flies were dissected to obtain the nematode larvae at various instar stages. The P. skrjabini found in the different instar stages of horn fly instars were counted and identified to assess the infection and developmental status. Nematode larvae at different developmental stages were obtained from the horn fly instars for further molecular analysis. Sequencing results confirmed that the nematode larvae were P. skrjabini. Furthermore, we found that the mean growth rate of the nematode larva increased as the horn fly instars develops. The results suggested that P. skrjabini infected the horn flies at the larval instar stage, and that the nematode larvae developed simultaneously with the horn fly instars stages. Our findings provide useful information into the elucidation of P. skrjabini infection and life history by studying horn fly development.


Subject(s)
Muscidae/parasitology , Nematoda/growth & development , Animals , China , Host-Parasite Interactions , Life Cycle Stages
6.
Chin Herb Med ; 12(2): 188-194, 2020 Apr.
Article in English | MEDLINE | ID: mdl-36119796

ABSTRACT

Objective: There are some anthraquinones, anthraquinones and flavonones in Sennae Folium which exhibited significant acidity, such as sennoside A/B and sennoside C/D. The current strategies used in separating these components are mainly based on conventional column chromatography which is time consuming, laborious and costly. This study is aimed at exploring a method of precipitation extraction of acid components in Sennae Folium. Using alkaloid as a "hook", it is reasonable to use the principle of "acid-alkali complexation" to "fish" the acidic components in Sennae Folium. Methods: Isothermal titration calorimeter (ITC) was used to measure the extraction efficiency of different alkaloids. Then, alkaloid determined by ITC was mixed with extracting solution of Sennae Folium to form complex. High performance liquid chromatography coupled with mass spectrometry (HPLC-MS2) was used to investigate the ingredients "fished" by berberine (Ber). The mechanism of "fishing" process was explained by ITC, optical activity, fluorescence spectrometry and scanning electron microscope. Results: The ITC results proved that the choice of "hook" was particularly important in the process of "fishing". Among the hooks, the fishing efficiency of the isoquinoline alkaloids (Ber) was the highest, reaching 10.3%. Nine ingredients were detected and determined by HPLC-MS2, and the main components were sennoside A/B and sennoside C/D. Based on ITC test of Ber and sennoside A, the combination mechanism of the two ingredients was a chemical reaction with a nearly binding ratio (2:1). Fluorescence and optical properties of the active ingredients were changed after complexation. By scanning electron microscope, we found that two types of components had obviously self-assembled behavior during the formation process. Conclusion: Ber successfully "fished" the main acidic components, sennoside A/B and sennoside C/D, from Sennae Folium. Combined with different characterizations, the "fishing" process was determined as a chemical association reaction induced by electrostatic interaction or π-π stacking. Therefore, with special identification ability, the "fishing" process had the potential of practical application.

7.
Eur J Med Chem ; 185: 111839, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31708185

ABSTRACT

The ligustrazine - betulin derivative (TB), TB amino acids derivatives (TB-01 - TB-09) and TB dipeptide derivatives (TB-10 - TB-18) were designed and synthesized. And their in vitro cytotoxic activities were evaluated against four cancer cell lines (Hela, HepG2, BGC-823 and HT-29) and normal cells MDCK by standard methylthiazol tetrazolium (MTT) assay. Most of them demonstrated better antitumor activity than the relevant material betulin. Among them, compound TB-01 showed the best anti-tumor effect on the cancer cells and the lowest toxicity on the normal cells. For example, the cytotoxicity of TB-01 against the cancer cells (mean IC50 = 4.86 ±â€¯1.16 µM) was 3-fold higher than that against the normal cells MDCK (IC50 = 16.11 ±â€¯2.29 µM). Moreover, TB-01 showed better cytotoxic than positive drug cisplatin (DDP) on tumor cells. Besides, the Zebrafish toxicity evaluation test showed that TB-01 demonstrated high biosafety. Subsequently, fluorescent staining, apoptosis detection and cell cycle analysis indicated that TB-01 induced early apoptosis in HepG2 cells and blocked the cell cycle in the G1 phase. In addition, the structure-activity relationships of these derivatives were briefly discussed.


Subject(s)
Amino Acids/pharmacology , Antineoplastic Agents/pharmacology , Dipeptides/pharmacology , Drug Design , Pyrazines/pharmacology , Triterpenes/pharmacology , Amino Acids/chemistry , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dipeptides/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Male , Molecular Structure , Pyrazines/chemistry , Structure-Activity Relationship , Triterpenes/chemistry , Zebrafish
8.
Eur J Med Chem ; 183: 111695, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31541868

ABSTRACT

As for complex brain diseases involved with multiple pathogenic factors, it is extremely difficult to achieve curative effect by acting on a single target. Multi-approach drugs provide a promising prospect in the treatment of complex brain diseases and have been attracting more and more interest. Enlightened by synergetic effect of combination in traditional herb medicines, forty-two novel cinnamic acid derivatives were designed and synthesized by introducing capsaicin and/or ligustrazine moieties to enhance biological activities in both neurological function and neurovascular protection. Elevated levels of cell viability on human brain microvascular endothelium cell line (HBMEC-2) and human neuroblastoma cell line (SH-SY5Y) against free radical injury were observed in most of compounds. Among them, compound 14a exhibited the most potent activities with a significant EC50 value of 3.26 ±â€¯0.16 µM (HBMEC-2) and 2.41 ±â€¯0.10 µM (SH-SY5Y). Subsequently, the results of morphological staining and flow cytometry analysis experiments on both cell lines showed that 14a had the potential to block apoptosis, maintain cell morphological integrity and protect physiological function of mitochondria. Moreover, 14a displayed specific angiogenesis effect in the chick chorioallantoic membrane (CAM) assay; and the results of RT-PCR suggested that the mechanism for angiogenesis effect was associated with the enhancement of the expressions of VEGFR2 mRNA in chick embryo. Preliminary structure-activity relationship was analyzed. The above evidences suggested that conjunctures gained by combining active ingredients in traditional herb medicines deserved further study and might provide references in discovering dual-effective lead compounds for brain diseases.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Cinnamates/pharmacology , Drug Design , Neuroprotective Agents/pharmacology , Angiogenesis Inducing Agents/chemical synthesis , Angiogenesis Inducing Agents/chemistry , Apoptosis/drug effects , Capsaicin/chemistry , Capsaicin/pharmacology , Cell Line , Cell Survival/drug effects , Cinnamates/chemical synthesis , Cinnamates/chemistry , Dose-Response Relationship, Drug , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Structure , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , Pyrazines/chemistry , Pyrazines/pharmacology , RNA, Messenger/antagonists & inhibitors , RNA, Messenger/genetics , RNA, Messenger/metabolism , Structure-Activity Relationship , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Eur J Med Chem ; 178: 623-635, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31226654

ABSTRACT

Glycyrrhetinic acid (GA) had been the star anticancer lead compound and appealed to many scientists all over the world; however, its antitumor activity was not potent enough. To improve GA's cytoxicity and explore the effect of bonding mode on antitumor activity, 32 compounds including GA-OH series (GO, esters in C-3 position) and GA-NH2 series (GN, with amide linkages in C-3 position) had been designed and synthesized. All the compounds were screened for in vitro cytotoxicity against A549, HepG2, MCF-7, Hela and MDCK cell lines. As a result, all the de-protected (without Boc group) derivatives showed much stronger cytotoxic activity than GA, and surprisingly enough, all the GN series of the compounds were more potent than GO series against various tumor cells. Among them, the compound 26 (amide linkages in C-3 position) exhibited stronger antitumor activity against A549 cell line (IC50 = 2.109 ±â€¯0.11 µM) than the positive drug cisplatin (IC50 = 9.001 ±â€¯0.37 µM). Further studies indicated that compound 26 could induce A549 apoptosis via nuclei fragmentation. The detection of apoptosis and cell cycle analysis indicated that compound 26 could induce the early apoptosis and prevent A549 cells transition from S to G2 phase. Furthermore, the structure-activity relationships were briefly discussed. Among which, current study displayed amide linkages in C-3 position could effectively enhance GA cytotoxicity, providing a new modification strategy for further study.


Subject(s)
Antineoplastic Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Madin Darby Canine Kidney Cells/drug effects , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/chemistry , Humans , Molecular Structure , Structure-Activity Relationship
10.
Int J Mol Sci ; 19(10)2018 Sep 30.
Article in English | MEDLINE | ID: mdl-30274380

ABSTRACT

Hederagenin (He) is a novel triterpene template for the development of new antitumor compounds. In this study, 26 new He⁻pyrazine derivatives were synthetized in an attempt to develop potent antitumor agents; they were screened for in vitro cytotoxicity against tumor and non-tumor cell lines. The majority of these derivatives showed much stronger cytotoxic activity than He. Remarkably, the most potent was compound 9 (half maximal inhibitory concentration (IC50) was 3.45 ± 0.59 µM), which exhibited similar antitumor activities against A549 (human non-small-cell lung cancer) as the positive drug cisplatin (DDP; IC50 was 3.85 ± 0.63 µM), while it showed lower cytotoxicity on H9c2 (murine heart myoblast; IC50 was 16.69 ± 0.12 µM) cell lines. Compound 9 could induce the early apoptosis and evoke cell-cycle arrest at the synthesis (S) phase of A549 cells. Impressively, we innovatively introduced the method of cluster analysis modeled as partial least squares discriminant analysis (PLS-DA) into the structure⁻activity relationship (SAR) evaluation, and SAR confirmed that pyrazine had a profound effect on the antitumor activity of He. The present studies highlight the importance of pyrazine derivatives of He in the discovery and development of novel antitumor agents.


Subject(s)
Drug Design , Oleanolic Acid/analogs & derivatives , Pyrazines/chemical synthesis , Pyrazines/toxicity , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Death , Cell Line, Tumor , Cell Shape/drug effects , Cluster Analysis , Discriminant Analysis , Humans , Inhibitory Concentration 50 , Least-Squares Analysis , Oleanolic Acid/chemical synthesis , Oleanolic Acid/chemistry , Oleanolic Acid/toxicity , Principal Component Analysis , Pyrazines/chemistry , Staining and Labeling , Structure-Activity Relationship
11.
Int J Mol Sci ; 19(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347770

ABSTRACT

Clinical applications of camptothecin (CPT) have been heavily hindered due to its non-targeted toxicity, active lactone ring instability, and poor water solubility. Targeted drug delivery systems may offer the possibility to overcome the above issues as reported. In this research, a series of prostate-specific membrane antigen (PSMA)-activated CPT prodrugs were designed and synthesized by coupling water-soluble pentapeptide, a PSMA hydrolyzing substrate, to CPT through an appropriate linker. The cytotoxicity of CPT prodrugs was masked temporarily until they were hydrolyzed by the PSMA present within the tumor sites, which restored cytotoxicity. The in vitro selective cytotoxic activities of the prodrugs were evaluated against PSMA-expressing human prostate cancer cells LNCaP-FGC and non-PSMA-expressing cancer cells HepG2, Hela, MCF-7, DU145, PC-3 and normal cells MDCK, LO2 by standard methylthiazol tetrazolium (MTT) assay. Most of the newly synthesized CPT prodrugs showed excellent selective toxicity to PSMA-producing prostate cancer cells LNCaP-FGC with improved water solubility. From among the library, CPT-HT-J-ZL12 showed the best cytotoxic selectivity between the PSMA-expressing and the non-PSMA-expressing cancer cells. For example, the cytotoxicity of CPT-HT-J-ZL12 (IC50 = 1.00 ± 0.20 µM) against LNCaP-FGC (PSMA⁺) was 40-fold, 40-fold, 21-fold, 5-fold and 40-fold, respectively, higher than that against the non-PSMA-expressing cells HepG2 (IC50 > 40.00 µM), Hela (IC50 > 40.00 µM), MCF-7 (IC50 = 21.68 ± 4.96 µM), DU145 (IC50 = 5.40 ± 1.22 µM), PC-3 (IC50 = 42.96 ± 3.69 µM) cells. Moreover, CPT-HT-J-ZL12 exhibited low cytotoxicity (IC50 > 40 µM) towards MDCK and LO2 cells. The cellular uptake experiment demonstrated the superior PSMA-targeting ability of the CPT-HT-J-ZL12, which was significantly accumulated in LNCaP-FGC (PSMA⁺), while it was minimized in HepG2 (PSMA-) cells. Further cell apoptosis analyses indicated that it showed a dramatically higher apoptosis-inducing activity in LNCaP-FGC (PSMA⁺) cells than in HepG2 (PSMA-) cells. Cell cycle analysis indicated that CPT-HT-J-ZL12 could induce cell cycle arrest at the S phase.


Subject(s)
Antigens, Surface/metabolism , Antineoplastic Agents/chemical synthesis , Camptothecin/analogs & derivatives , Glutamate Carboxypeptidase II/metabolism , Prodrugs/chemical synthesis , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , HeLa Cells , Hep G2 Cells , Humans , MCF-7 Cells , Oligopeptides/chemistry , Prodrugs/pharmacology , Quantitative Structure-Activity Relationship
12.
Eur J Med Chem ; 155: 183-196, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29886322

ABSTRACT

To improve podophyllotoxin's cytotoxicity and selective effect, twenty-two podophyllotoxin derivatives had been designed and synthesized. The cytotoxicity of these compounds was evaluated on A549, MCF-7, HepG2 and L-02 cell lines. As a result, most of the compounds were more potent than the positive drugs Etoposide (VP-16) and Doxorubicin which were widely used in clinical for antitumor. There were no magnitude differences about these de-protected (without Boc group) podophyllotoxin amino acid derivatives' cytotoxicity between three tumor cell lines and normal hepatic L-02 cells. Interestingly, some protected (with Boc group) amino acid derivatives and some ligustrazine derivatives showed high selectivity, especially the compound 2 (sarcosine derivative with Boc group). It exhibited highly selectivity both on the cancer cells and the normal cells. The IC50 of compound 2 was 9.5 ±â€¯0.03 nM, 132.6 ±â€¯24.1 nM, 96.4 ±â€¯1.3 nM and 160.2 ±â€¯4.7 nM against A549, MCF-7, HepG2 and L-02 cells, respectively. The SI (IC50L-02/IC50A549) value of compound 2, Doxorubicin and Etoposide was 16.9, 0.2 and 0.5, respectively. Meanwhile, SI (IC50MCF-7/IC50A549) value and SI (IC50HepG2/IC50A549) value of compound 2 were 14.0 and 10.1, respectively. In summary, compound 2 showed high selectivity especially on A549 cells. Further research on cell apoptosis indicated that compound 2 could induce apoptosis of A549 cells through nuclei fragmentation and had lower toxicity to normal hepatic L-02 cells. The detection of apoptosis and cell cycle analysis indicated that compound 2 induced A549 cells apoptosis and prevented A549 cells transition from S to G2 phase while there were no obvious changes on L-02 cells. Moreover, the structure-activity relationships of these derivatives were briefly discussed.


Subject(s)
Antineoplastic Agents/pharmacology , Podophyllotoxin/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Models, Molecular , Molecular Structure , Podophyllotoxin/chemical synthesis , Podophyllotoxin/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
Zhongguo Zhong Yao Za Zhi ; 42(20): 3969-3973, 2017 Oct.
Article in Chinese | MEDLINE | ID: mdl-29243435

ABSTRACT

It has been focused on that there will be precipitates when decoction of Scutellariat Radix mixed with Coptidis Rhizoma. Precipitation was derived from interaction between acidic and basic compounds. This study was based on the interaction between active ingredients after compatibility, strived to explore whether it was feasible to judge the qualities of different Scutellariat Radix by isothermal titration calorimetry (ITC), build a new method established to characterize the qualities of traditional Chinese medicine by taking a series of active ingredients as index. We selected Scutellariat Radix (including three batches of different Scutellariat Radix bought from market and immature Scutellariat Radix which usually was used as adulterant) in different batches as the samples. First, we used ITC to determine the binding heat of the reactions between berberine and the decoctions of different Scutellariat Radix. The test showed that the binding heat of berberine titrated Scutellariat Radix was Scutellariat Radix A (-317.20 µJ), Scutellariat Radix B (-292.83 µJ), Scutellariat Radix C (-208.95 µJ) and immature Scutellariat Radix (-21.53 µJ), respectively. We chose deionized water titrated by berberine (2.51 µJ) as control. The heat change of berberine titrated immature Scutellariat Radix was much less than berberine titrated Scutellariat Radix. Then we determined the absorbance of different decoctions of Scutellariat Radix by UV Spectrophotometry on the maximum absorption wavelength, and the result is: Scutellariat Radix A (0.372), Scutellariat Radix B (0.333), Scutellariat Radix C (0.272), immature Scutellariat Radix (0.124). The absorbance of immature Scutellariat Radix was also less than Scutellariat Radix. The result of ITC assay was corresponded to UV spectrophotometry test. In conclusion, ITC could be used to characterize the quality of Scutellariat Radix. The new method to characterize the qualities of traditional Chinese medicine by taking a kind of active ingredients as index building by ITC was simple, scientific and feasible.


Subject(s)
Calorimetry , Drugs, Chinese Herbal/standards , Scutellaria baicalensis/chemistry , Drugs, Chinese Herbal/chemistry , Medicine, Chinese Traditional , Plant Roots/chemistry , Quality Control , Rhizome
14.
Molecules ; 22(6)2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28574470

ABSTRACT

Glycyrrhetinic Acid (GA), a triterpenoid aglycone component of the natural product glycyrrhizinic acid, was found to possess remarkable anti-proliferative and apoptosis-inducing activity in various cancer cell lines. Though GA was not as active as other triterpenes, such as betulinic acid and oleanolic acid, it could trigger apoptosis in tumor cells and it can be obtained easily and cheaply, which has stimulated scientific interest in using GA as a scaffold to synthesize new antitumor agents. The structural modifications of GA reported in recent decades can be divided into four groups, which include structural modifications on ring-A, ring-C, ring-E and multiple ring modifications. The lack of a comprehensive and recent review on this topic prompted us to gather more new information. This overview is dedicated to summarizing and updating the structural modification of GA to improve its antitumor activity published between 2005 and 2016. We reviewed a total of 210 GA derivatives that we encountered and compiled the most active GA derivatives along with their activity profile in different series. Furthermore, the structure activity relationships of these derivatives are briefly discussed. The included information is expected to be of benefit to further studies of structural modifications of GA to enhance its antitumor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Glycyrrhetinic Acid/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Glycyrrhetinic Acid/analogs & derivatives , Glycyrrhetinic Acid/chemical synthesis , Glycyrrhetinic Acid/chemistry , Humans , Inhibitory Concentration 50 , Structure-Activity Relationship
15.
Molecules ; 22(5)2017 Apr 26.
Article in English | MEDLINE | ID: mdl-28445422

ABSTRACT

Qingwen Baidu Decoction (QBD) is an extraordinarily "cold" formula. It was traditionally used to cure epidemic hemorrhagic fever, intestinal typhoid fever, influenza, sepsis and so on. The purpose of this study was to discover relationships between the change of the constituents in different extracts of QBD and the pharmacological effect in a rat model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). The study aimed to discover the changes in constituents of different QBD extracts and the pharmacological effects on acute lung injury (ALI) induced by LPS. The results demonstrated that high dose and middle dose of QBD had significantly potent anti-inflammatory effects and reduced pulmonary edema caused by ALI in rats (p < 0.05). To explore the underlying constituents of QBD, we assessed its influence of six different QBD extracts on ALI and analyzed the different constituents in the corresponding HPLC chromatograms by a Principal Component Analysis (PCA) method. The results showed that the pharmacological effect of QBD was related to the polarity of its extracts, and the medium polarity extracts E2 and E5 in particular displayed much better protective effects against ALI than other groups. Moreover, HPLC-DAD-ESI-MSn and PCA analysis showed that verbascoside and angoroside C played a key role in reducing pulmonary edema. In addition, the current study revealed that ethyl gallate, pentagalloylglucose, galloyl paeoniflorin, mudanpioside C and harpagoside can treat ALI mainly by reducing the total cells and infiltration of activated polymorphonuclear leukocytes (PMNs).


Subject(s)
Acute Lung Injury/drug therapy , Anti-Inflammatory Agents/pharmacology , Drugs, Chinese Herbal/pharmacology , Acute Lung Injury/immunology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification , Drugs, Chinese Herbal/analysis , Drugs, Chinese Herbal/chemistry , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/immunology , Lung/pathology , Male , Neutrophil Infiltration/drug effects , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/metabolism
16.
Eur J Med Chem ; 130: 26-38, 2017 Apr 21.
Article in English | MEDLINE | ID: mdl-28237794

ABSTRACT

The lead compound TBA, 3ß-Hydroxy-lup-20(29)-ene-28-oic acid-3, 5, 6-trimethylpyrazin-2-methyl ester, which exhibited promising antitumor activity and induced tumor cell apoptosis in various cancer cell lines, had previously been reported. Moreover, reports have revealed that the introduction of amino acid to betulinic acid could improve selective cytotoxicity as well as water solubility. Thus, a series of novel TBA amino acid and dipeptide derivatives were designed, synthesized and screened for selective cytotoxic activity against five cancer cell lines (HepG2, HT-29, Hela, BCG-823 and A549) and the not malignant cell line MDCK by standard MTT assay. Most of the tested TBA-amino acid and dipeptide analogues showed stronger anti-proliferative activity against all tested tumor cell lines than TBA. Among them, BA-25 exhibited the greatest cytotoxic activity on tumor cell lines (mean IC50 = 2.31 ± 0.78 µM), that was twofold than the positive drug cisplatin (DDP), while it showed lower cytotoxicity on MDCK cell line than DDP. Further cell apoptosis analyses indicated BA-25-induced apoptosis was associated with loss of mitochondrial membrane potential and increase of intracellular free Ca2+ concentration.


Subject(s)
Amino Acids/chemistry , Antineoplastic Agents/chemical synthesis , Pyrazines/chemistry , Triterpenes/chemistry , Amino Acids/pharmacology , Anisoles , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Calcium/metabolism , Cell Line, Tumor , Dipeptides/chemistry , Dipeptides/pharmacology , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Pentacyclic Triterpenes , Pyrazines/pharmacology , Structure-Activity Relationship , Triterpenes/pharmacology , Betulinic Acid
17.
PLoS One ; 10(6): e0128375, 2015.
Article in English | MEDLINE | ID: mdl-26058040

ABSTRACT

Flavonoids are important components of 'functional foods', with beneficial effects on cardiovascular function. The present study was designed to investigate whether licochalcone D (LD) could be a cardioprotective agent in ischemia/reperfusion (I/R) injury and to shed light on its possible mechanism. Compared with the I/R group, LD treatment enhanced myocardial function (increased LVDP, dp/dtmax, dp/dtmin, HR and CR) and suppressed cardiac injury (decreased LDH, CK and myocardial infarct size). Moreover, LD treatment reversed the I/R-induced cleavage of caspase-3 and PARP, resulting in a significant decrease in proinflammatory factors and an increase in antioxidant capacity in I/R myocardial tissue. The mechanisms underlying the antiapoptosis, antiinflammation and antioxidant effects were related to the activation of the AKT pathway and to the blockage of the NF-κB/p65 and p38 MAPK pathways in the I/R-injured heart. Additionally, LD treatment markedly activated endothelial nitric oxide synthase (eNOS) and reduced nitric oxide (NO) production. The findings indicated that LD had real cardioprotective potential and provided support for the use of LD in myocardial I/R injury.


Subject(s)
Cardiotonic Agents/therapeutic use , Chalcones/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Animals , Apoptosis/drug effects , Cardiotonic Agents/chemistry , Cardiotonic Agents/pharmacology , Chalcones/chemistry , Chalcones/pharmacology , Glutathione/metabolism , Heart Function Tests , In Vitro Techniques , Inflammation/pathology , Male , Malondialdehyde/metabolism , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Perfusion , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
18.
Zhongguo Zhong Yao Za Zhi ; 39(14): 2679-83, 2014 Jul.
Article in Chinese | MEDLINE | ID: mdl-25272495

ABSTRACT

Ligustrazine, one of the major effective components of the Chinese traditional medicinal herb Ligusticum Chuanxiong Hort, has been reported plenty of biological activities, such as protect cardiovascular and cerebrovascular, neuroprotection and anti-tumor, et al. Because of its remarkable effects, studies on structural modification of ligustrazine have attracted much attention. Ligustrazine synthetic derivatives reported in recent decades are mainly derived from four primary intermediates (TMP-COOH, TMP-OH, TMP-NH2, HO-TMP-OH). To explore the neuroprotection activitiy of ligustrazine intermediates, six ligustrazine intermediates (2, 5, 8, 11, 12, 13) were synthesized and their protective effects against CoCl2-induced neurotoxicity in differentiated PC12 cells were studied. The target compounds were prepared via different chemical methods, including oxidation, substitution, esterification and amidation without changing the structure nucleus of ligustrazine. Compared with TMP (EC50 = 56.03 micromol x L(-1)), four compounds (2, 5, 12 and 13) exhibited higher activity (EC50 < 50 micromol x L(-1)) respectively, of which, compound 2 displayed the highest protective effect against the damaged PC12 cells (EC50 = 32.86 micromol x L(-1)), but target compounds 8 and 11 appeared lower activity (EC50 > 70 micromol x L(-1)). By structure-activity relationships analysis, the introduction of carboxyl, amino to the side chain of ligustrazine and appropriately increase the proportion of ligustrazine may contribute to enhance its neuroprotective activity, which provides a reference for the design, synthesis and activity screening of relevant series of ligustrazine derivatives in the future.


Subject(s)
Cell Differentiation/drug effects , Cobalt/toxicity , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/pharmacology , Neurotoxins/toxicity , Pyrazines/chemical synthesis , Pyrazines/pharmacology , Animals , Chemistry Techniques, Synthetic , Drugs, Chinese Herbal/chemistry , Neuroprotective Agents/chemistry , PC12 Cells , Pyrazines/chemistry , Rats
19.
Zhongguo Zhong Yao Za Zhi ; 38(2): 208-11, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23672043

ABSTRACT

To explore the effects of protocatechuic acid (PCA) and its derivants on angiogenesis of the chick embryo chorioallantoic membrane (CAM) and scavenging DPPH radical in vitro. The protection of benzyl and alkaline hydrolysis of benzyl ester were employed. The structures of PCA-1, PCA-2 and PCA-3, the derivates of PCA, were elucidated by 1H, 13C-NMR and MS data The bioactivity of PCA and its derivants was evaluated on the models of DPPH radical and chick embryo chorioallantoic membrane (CAM), respectively. PCA and PCA-1 showed the best activity of scavenging DPPH radical among all the compounds. In contrast to PCA-2, PCA and PCA-3 displayed inhibition to angiogenesis (P < 0.001). Pyrocatechol hydroxyl is the active site of PCA on scavenging DPPH radical in vitro. PCA with carboxyl and without pyrocatechol hydroxyl seems to show promotion to angiogenesis, but it needs more evidences.


Subject(s)
Angiogenesis Inducing Agents/chemistry , Chorioallantoic Membrane/drug effects , Drugs, Chinese Herbal/chemistry , Hydroxybenzoates/chemistry , Angiogenesis Inducing Agents/antagonists & inhibitors , Animals , Biphenyl Compounds , Catechols/chemistry , Chick Embryo , Drugs, Chinese Herbal/isolation & purification , Free Radical Scavengers/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Picrates
20.
Zhongguo Zhong Yao Za Zhi ; 38(1): 133-5, 2013 Jan.
Article in Chinese | MEDLINE | ID: mdl-23596890

ABSTRACT

Patent network of Chinese patent medicines is a patent group composed of several correlated patents around basic patents or core technologies characterized by traditional Chinese medicine technologies. With the clue of Tianjin Tasly Group's acquisition of seven compound Danshen patents characterized by extract feeds of Beijing Cairui Pharmaceutical Co., Ltd., we made an analysis on how Tasly builds a patent network themed on compound Danshen preparation products characterized by extract feeds, in hope of providing reference for other Chinese pharmaceutical enterprise to establish and improve key patent networks of traditional Chinese medicines.


Subject(s)
Chemistry, Pharmaceutical/legislation & jurisprudence , Drugs, Chinese Herbal/analysis , Patents as Topic , Phenanthrolines/analysis , Salvia miltiorrhiza/chemistry , Chemistry, Pharmaceutical/methods , China , Medicine, Chinese Traditional/methods , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL
...