Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Natl Sci Rev ; 10(12): nwad254, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38021166

ABSTRACT

Limiting climate change to 1.5°C and achieving net-zero emissions would entail substantial carbon dioxide removal (CDR) from the atmosphere by the mid-century, but how much CDR is needed at country level over time is unclear. The purpose of this paper is to provide a detailed description of when and how much CDR is required at country level in order to achieve 1.5°C and how much CDR countries can carry out domestically. We allocate global CDR pathways among 170 countries according to 6 equity principles and assess these allocations with respect to countries' biophysical and geophysical capacity to deploy CDR. Allocating global CDR to countries based on these principles suggests that CDR will, on average, represent ∼4% of nations' total emissions in 2030, rising to ∼17% in 2040. Moreover, equitable allocations of CDR, in many cases, exceed implied land and carbon storage capacities. We estimate ∼15% of countries (25) would have insufficient land to contribute an equitable share of global CDR, and ∼40% of countries (71) would have insufficient geological storage capacity. Unless more diverse CDR technologies are developed, the mismatch between CDR liabilities and land-based CDR capacities will lead to global demand for six GtCO2 carbon credits from 2020 to 2050. This demonstrates an imperative demand for international carbon trading of CDR.

2.
Parasitol Res ; 121(2): 743-750, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34988670

ABSTRACT

Undercooked or raw meat containing cyst-stage bradyzoites and oocyst-contaminated pets are presumed to constitute a major source of human toxoplasmosis. As the geospatial epidemiology of Toxoplasma gondii (T. gondii) infection in livestock, pets, and humans is rarely studied in China, we undertook a geospatial analysis using GIS visualization techniques. The present study retrieved information from the PubMed, China National Knowledge Infrastructure, and Baidu Scholar databases from 1984 up to 2020. All the data about the seroprevalence of T. gondii in livestock (sheep and goats, pigs, cattle and yaks), pets (cats, dogs), and humans in China were collected. Geospatial epidemiology of T. gondii infection in these hosts was performed using GIS. Results revealed that the estimated pooled seroprevalence of T. gondii was ranged from 3.98 to 43.02% in sheep and goats in China, 0.75 to 30.34% in cattle and yaks, 10.45 to 66.47% in pigs, 2.50 to 60.00% in cats, 0.56 to 27.65% in dogs, and 0.72 to 23.41% in humans. The higher seroprevalences of T. gondii were observed in sheep and goats in the districts of Chongqing, Zhejiang, and Beijing. The infection rates of T. gondii in cattle and yaks were higher in Guizhou, Zhejiang, and Chongqing. Also, the pigs from Chongqing and Guizhou were most severely infected with T. gondii. For cats, the districts of Shanxi, Hebei, and Yunnan had higher seroprevalences of T. gondii and, the infections among dogs were higher in Yunnan and Hebei as well. Furthermore, higher infection pressure of T. gondii exists in the districts of Taiwan and Tibet in humans. The geographical and spatial distribution of toxoplasmosis indicated that infection with T. gondii was widely spread in China, with a wide range of variations among the different hosts and regions in the country. Our results suggested that livestock and pets are not only a reservoir for the parasite but also a direct source of T. gondii infection for humans. It is important to control T. gondii infections in these animals that would reduce the risk of toxoplasmosis in humans.


Subject(s)
Toxoplasma , Toxoplasmosis, Animal , Toxoplasmosis , Animals , Antibodies, Protozoan , Cats , Cattle , China/epidemiology , Dogs , Humans , Livestock , Pets , Seroepidemiologic Studies , Sheep , Swine , Toxoplasmosis, Animal/epidemiology
3.
BMC Musculoskelet Disord ; 23(1): 6, 2022 Jan 03.
Article in English | MEDLINE | ID: mdl-34980080

ABSTRACT

BACKGROUND: Pedicle screw invasion of the proximal articular process will cause local articular process degeneration and acceleration, which is an important factor affecting adjacent segment degeneration. Although lumbar spondylolisthesis is a risk factor for screw invasion of the proximal joint, there is no clear conclusion regarding the two different types of spondylolisthesis. Therefore, the purpose of this study was to explore the influence of pedicle screw placement on proximal facet invasion in the treatment of degenerative spondylolisthesis and isthmic spondylolisthesis. METHODS: In total, 468 cases of lumbar spondylolisthesis treated by decompression and fusion in our hospital from January 2017 to January 2020 were included in this retrospective study. Among them, 238 cases were degenerative spondylolisthesis (group A), and 230 cases were isthmic spondylolisthesis (group B). Sex, age, body mass index, bone mineral density, preoperative visual analog scale (VAS) and Oswestry Disability Index (ODI) scores, postoperative VAS and ODI scores at 1 month and 3 months, and angle of the proximal facet joint at the last follow-up were recorded and compared between the two groups. The degree of pedicle screw invasion of the proximal facet joint was graded and compared by the SEO grading method. RESULTS: There were no significant differences in sex, age, body mass index, bone mineral density, preoperative VAS and ODI scores, or proximal facet joint angle between the two groups (P > 0.05). There was no significant difference in VAS and ODI scores between the two groups at 1 month and 3 months after the operation (P > 0.05). The VAS score of group A at the last follow-up was 1 (1,2). The VAS score of group B at the last follow-up was 3 (1,3). The ODI score of group A at the last follow-up was 6(4,26). The ODI score of group B at the last follow-up was 15(8,36). The VAS and ODI scores of the two groups at the last follow-up were significantly different (P < 0.05). According to the SEO grading method, the invasion of the proximal articular process by pedicle screw placement in group A involved 320 cases in grade 0, 128 cases in grade I and 28 cases in grade II. In group B, there were 116 cases in grade 0, 248 cases in grade I and 96 cases in grade II, with a significant difference (P < 0.01). CONCLUSION: In summary, a certain number of cases involving screws invading the proximal facet joint occurred in the two different types of lumbar spondylolisthesis, but the number in the isthmic spondylolisthesis group was significantly higher than that in the degenerative spondylolisthesis group, which caused more trauma to the proximal facet joint and significantly affected the patient prognosis.


Subject(s)
Pedicle Screws , Spinal Fusion , Spondylolisthesis , Humans , Infant , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Retrospective Studies , Spinal Fusion/adverse effects , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Treatment Outcome
4.
BMC Musculoskelet Disord ; 23(1): 39, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991578

ABSTRACT

BACKGROUND: To analyze the risk factors for pedicle screw invasion of the proximal facet joint after lumbar surgery. METHODS: From January 2019 to January 2021, 1794 patients with lumbar degenerative disease, such as lumbar disc herniation, lumbar spinal stenosis and lumbar spondylolisthesis, were treated at our hospital. In all, 1221 cases were included. General data (sex, age, BMI), bone mineral density, proximal facet joint angle, degenerative lumbar spondylolisthesis, isthmic lumbar spondylolisthesis and fixed segment in the two groups were recorded. After the operation, vertebral CT of the corresponding surgical segments was performed for three-dimensional reconstruction and evaluation of whether the vertebral arch root screw interfered with the proximal facet joint. The included cases were divided into an invasion group and a noninvasion group. Univariate analysis was used to screen the risk factors for pedicle screw invasion of the proximal facet joint after lumbar surgery, and the selected risk factors were included in the logistic model for multivariate analysis. RESULTS: The single-factor analysis showed a significant difference in age, BMI, proximal facet joint angle, degenerative lumbar spondylolisthesis, and fixed segment (P < 0.1). Multifactor analysis of the logistic model showed a significant difference for age ≥ 50 years (P < 0.001, OR = 2.291), BMI > 28 kg/m2 (P < 0.001, OR = 2.548), degenerative lumbar spondylolisthesis (P < 0.001, OR = 2.187), gorge cleft lumbar relaxation (P < 0.001, OR = 2.410), proximal facet joint angle (35 ~ 45°: P < 0.001, OR = 3.151; > 45°: P < 0.001, OR = 3.578), and fixed segment (lower lumbar spine: P < 0.001, OR = 2.912). CONCLUSION: Age (≥ 50 years old), BMI (> 28 kg/m2), proximal facet joint angle (35 ~ 45°, > 45°), degenerative lumbar spondylolisthesis, isthmic lumbar spondylolisthesis and fixed segment (lower lumbar spine) are independent risk factors for pedicle screw invasion of the proximal facet joint after lumbar surgery. Compared with degenerative lumbar spondylolisthesis, facet joint intrusion is more likely in isthmic lumbar spondylolisthesis.


Subject(s)
Pedicle Screws , Spinal Fusion , Spondylolisthesis , Zygapophyseal Joint , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/surgery , Middle Aged , Multivariate Analysis , Spinal Fusion/adverse effects , Spondylolisthesis/diagnostic imaging , Spondylolisthesis/surgery , Zygapophyseal Joint/diagnostic imaging , Zygapophyseal Joint/surgery
5.
Stress Biol ; 2(1): 50, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37676522

ABSTRACT

To cope with fluctuating light conditions, terrestrial plants have evolved precise regulation mechanisms to help optimize light capture and increase photosynthetic efficiency. Upon blue light-triggered autophosphorylation, activated phototropin (PHOT1 and PHOT2) photoreceptors function solely or redundantly to regulate diverse responses, including phototropism, chloroplast movement, stomatal opening, and leaf positioning and flattening in plants. These responses enhance light capture under low-light conditions and avoid photodamage under high-light conditions. NON-PHOTOTROPIC HYPOCOTYL 3 (NPH3) and ROOT PHOTOTROPISM 2 (RPT2) are signal transducers that function in the PHOT1- and PHOT2-mediated response. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation as well as NPH3-mediated responses. NRL PROTEIN FOR CHLOROPLAST MOVEMENT 1 (NCH1) was recently identified as a PHOT1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation. The PHYTOCHROME KINASE SUBSTRATE (PKS) proteins (PKS1, PKS2, and PKS4) interact with PHOT1 and NPH3 and mediate hypocotyl phototropic bending. This review summarizes advances in phototropic growth and chloroplast movement induced by light. We also focus on how crosstalk in signaling between phototropism and chloroplast movement enhances weak light capture, providing a basis for future studies aiming to delineate the mechanism of light-trapping plants to improve light-use efficiency.

6.
Mil Med Res ; 8(1): 37, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34148549

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is the main life-threatening complication of crush syndrome (CS), and myoglobin is accepted as the main pathogenic factor. The pattern recognition receptor retinoicacid-inducible gene I (RIG-I) has been reported to exert anti-viral effects function in the innate immune response. However, it is not clear whether RIG-I plays a role in CS-AKI. The present research was carried out to explore the role of RIG-I in CS-AKI. METHODS: Sprague-Dawley rats were randomly divided into two groups: the sham and CS groups (n = 12). After administration of anesthesia, the double hind limbs of rats in the CS group were put under a pressure of 3 kg for 16 h to mimic crush conditions. The rats in both groups were denied access to food and water. Rats were sacrificed at 12 h or 36 h after pressure was relieved. The successful establishment of the CS-AKI model was confirmed by serum biochemical analysis and renal histological examination. In addition, RNA sequencing was performed on rat kidney tissue to identify molecular pathways involved in CS-AKI. Furthermore, NRK-52E cells were treated with 200 µmol/L ferrous myoglobin to mimic CS-AKI at the cellular level. The cells and cell supernatant samples were collected at 6 h or 24 h. Small interfering RNAs (siRNA) was used to knock down RIG-I expression. The relative expression levels of molecules involved in the RIG-I pathway in rat kidney or cells samples were measured by quantitative Real-time PCR (qPCR), Western blotting analysis, and immunohistochemistry (IHC) staining. Tumor necrosis factor-α (TNF-α) was detected by ELISA. Co-Immunoprecipitation (Co-IP) assays were used to detect the interaction between RIG-I and myoglobin. RESULTS: RNA sequencing of CS-AKI rat kidney tissue revealed that the different expression of RIG-I signaling pathway. qPCR, Western blotting, and IHC assays showed that RIG-I, nuclear factor kappa-B (NF-κB) P65, p-P65, and the apoptotic marker caspase-3 and cleaved caspase-3 were up-regulated in the CS group (P < 0.05). However, the levels of interferon regulatory factor 3 (IRF3), p-IRF3 and the antiviral factor interferon-beta (IFN-ß) showed no significant changes between the sham and CS groups. Co-IP assays showed the interaction between RIG-I and myoglobin in the kidneys of the CS group. Depletion of RIG-I could alleviate the myoglobin induced expression of apoptosis-associated molecules via the NF-κB/caspase-3 axis. CONCLUSION: RIG-I is a novel damage-associated molecular patterns (DAMPs) sensor for myoglobin and participates in the NF-κB/caspase-3 signaling pathway in CS-AKI. In the development of CS-AKI, specific intervention in the RIG-I pathway might be a potential therapeutic strategy for CS-AKI.


Subject(s)
Caspase 3/drug effects , NF-kappa B/drug effects , RNA Helicases/pharmacology , Signal Transduction/drug effects , Acute Kidney Injury/etiology , Acute Kidney Injury/physiopathology , Alarmins , Animals , China , Crush Syndrome/blood , Crush Syndrome/complications , Disease Models, Animal , Male , Myoglobin/pharmacology , Myoglobin/therapeutic use , RNA Helicases/therapeutic use , Rats , Rats, Sprague-Dawley
7.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2583-2592, 2020 Aug.
Article in Chinese | MEDLINE | ID: mdl-34494780

ABSTRACT

To provide basis for high-yield and high-efficiency of wheat production, with two wheat cultivars, 'Zhengmai 366' (strong gluten) and 'Bainong 207' (medium gluten), we investigated the effects of four nitrogen source types, ammonium chloride (NT1), calcium nitrate (NT2), urea (NT3) and calcium ammonium nitrate (NT4), applied under two water treatments, no irrigation (W1) and irrigation at jointing and heading stages (W2), on soil N-supplying capacity, grain yield and nitrogen utilization efficiency. The results showed that content of soil ammonium and nitrate at flowering stage decreased with increasing soil depths. Compared with the corresponding value of 'Zhengmai 366' under W1 treatment, W2 treatment decreased the contents of soil ammonium and nitrate in the 0-60 cm layer, and enzymes activities of urease, invertase and catalase by 10.0%, 13.3%, 7.5%, 2.8%, and 3.9%, respectively. For the two wheat cultivars, the content of ammo-nium was significantly higher under NT1 and NT3 treatments than that of others, while the content of nitrate under NT2 and NT3 treatments was significantly higher than that of others. Additionally, NT3 and NT4 treatments increased soil urease and invertase activities at the middle and later stages of grain filling. Compared with NT1 treatment, NT3 and NT4 fertilization increased grain yield and nitrogen use efficiency of cultivar 'Zhengmai 366' by 14.9% and 20.7%, 25.6% and 13.9%, under W2 treatment, respectively. Soil nitrate content in the 0-20 cm layer and the ammonium content in the 20-40 cm layer were positively correlated with wheat grain yield and nitrogen utilization efficiency. Under both water conditions, applying urea and calcium ammonium nitrate improved soil enzyme activity at the middle and later stages of grain filling, which was beneficial for wheat yield and nitrogen use efficiency.


Subject(s)
Nitrogen , Triticum , Agricultural Irrigation , Biomass , Nitrogen/analysis , Soil , Water/analysis
8.
Bioresour Technol ; 288: 121535, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31152957

ABSTRACT

In this study, magnetic humic acid (MHA) nanoparticle was prepared and confirmed the enhancement on reduction of azo dyes under high salt concentration. The anaerobic growth of the strain Bacillus sp. on quinones makes the biogenic hydroquinone feasible, and the latter was proven to reduce the azo dyes stoichiometrically. This in-situ reversibly oxidation and reduction of MHA acts as electron shuttle to catalyze the biotic reduction of the azo dyes. The biodegradation efficiencies in batch experiments and sequencing batch reactor with MHA were increased by 1.5-2.5 times as compared to that of control without the catalyzer. Moreover, the negligible leaching of HA under various environmental conditions suggests the robustness of the coating of HA on Fe/O surface. These results indicated that the as-prepared MHA could be used as redox mediator to accelerate the extracellular electron transfer, which is of great environmental significance for the removal of hazardous compounds.


Subject(s)
Bacillus , Nanoparticles , Azo Compounds , Biodegradation, Environmental , Coloring Agents , Humic Substances , Oxidation-Reduction
9.
Bioresour Technol ; 266: 176-180, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29966927

ABSTRACT

Biogenic nanoparticles are promising materials for their green synthesis method and good performance in stimulation on reduction of environmental contaminants. In this study, Pd(0) nanoparticles (bio-Pd) were generated by Klebsiella oxytoca GS-4-08 in fermentative condition and in-situ improved the azo dye reduction. The bio-Pd was mainly located on cell membrane with a size range of 5-20 nm by TEM and XRD data analyses. Anthraquinone-2-disulfonate (AQS) greatly increased the reduction rate of Pd(II) with a reduction efficiency as high as 96.54 ±â€¯0.23% in 24 h. The quinone respiration theory, glucose metabolism and the biohydrogen pathway were used to explain the enhancement mechanism of the in-situ generated bio-Pd on azo dye reduction. These results indicate that the in-situ generated bio-Pd by K. oxytoca strain is efficient for azo dye reduction without complex preparation processes, which is of great significance for the removal and subsequent safe disposal of hazardous environmental compounds.


Subject(s)
Azo Compounds/isolation & purification , Nanoparticles , Palladium , Water Pollutants, Chemical/isolation & purification , Coloring Agents , Oxidation-Reduction
10.
Appl Environ Microbiol ; 83(10)2017 05 15.
Article in English | MEDLINE | ID: mdl-28283518

ABSTRACT

Biohydrogen production from the pulp and paper effluent containing rich lignocellulosic material could be achieved by the fermentation process. Xylose, an important hemicellulose hydrolysis product, is used less efficiently as a substrate for biohydrogen production. Moreover, azo dyes are usually added to fabricate anticounterfeiting paper, which further increases the complexity of wastewater. This study reports that xylose could serve as the sole carbon source for a pure culture of Klebsiella oxytoca GS-4-08 to achieve simultaneous decolorization and biohydrogen production. With 2 g liter-1 of xylose as the substrate, a maximum xylose utilization rate (URxyl) and a hydrogen molar yield (HMY) of 93.99% and 0.259 mol of H2 mol of xylose-1, respectively, were obtained. Biohydrogen kinetics and electron equivalent (e- equiv) balance calculations indicated that methyl red (MR) penetrates and intracellularly inhibits both the pentose phosphate pathway and pyruvate fermentation pathway, while methyl orange (MO) acted independently of the glycolysis and biohydrogen pathway. The data demonstrate that biohydrogen pathways in the presence of azo dyes with sulfonate and carboxyl groups were different, but the azo dyes could be completely reduced during the biohydrogen production period in the presence of MO or MR. The feasibility of hydrogen production from industrial pulp and paper effluent by the strain if the xylose is sufficient was also proved and was not affected by toxic substances which usually exist in such wastewater, except for chlorophenol. This study offers a promising energy-recycling strategy for treating pulp and paper wastewaters, especially for those containing azo dyes.IMPORTANCE The pulp and paper industry is a major industry in many developing countries, and the global market of pulp and paper wastewater treatment is expected to increase by 60% between 2012 and 2020. Such wastewater contains large amounts of refractory contaminants, such as lignin, whose reclamation is considered economically crucial and environmentally friendly. Furthermore, azo dyes are usually added in order to fabricate anticounterfeiting paper, which further increases the complexity of the pulp and paper wastewater. This work may offer a better understanding of biohydrogen production from xylose in the presence of azo dyes and provide a promising energy-recycling method for treating pulp and paper wastewater, especially for those containing azo dyes.


Subject(s)
Azo Compounds/metabolism , Coloring Agents/metabolism , Hydrogen/metabolism , Klebsiella oxytoca/metabolism , Xylose/metabolism , Alkanesulfonates/metabolism , Azo Compounds/chemistry , Biodegradation, Environmental , Coloring Agents/chemistry , Fermentation , Kinetics , Klebsiella oxytoca/genetics , Wastewater/chemistry , Wastewater/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...