Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Appl Biochem ; 69(2): 567-575, 2022 Apr.
Article in English | MEDLINE | ID: mdl-33660328

ABSTRACT

An acetylcholinesterase (AChE) biosensor was successfully fabricated with a stable structure and high detection accuracy. Graphene (Gra) nanofragments modified with chitosan (CS) and AChE were successively drip coated on the surface of a glassy carbon electrode via a layer-by-layer assembly method. The concentration range of the sensor to detect dichlorvos was 0.1-100,000 nM, and the limit of detection was 54 pM. CS was used to modify Gra for the first time, which enhanced the mechanical flexibility of these Gra nanostructures, significantly improving the stability and detection accuracy of this sensor.


Subject(s)
Biosensing Techniques , Chitosan , Graphite , Pesticides , Acetylcholinesterase/chemistry , Biosensing Techniques/methods , Chitosan/chemistry , Electrodes , Enzymes, Immobilized/chemistry , Graphite/chemistry , Limit of Detection , Organophosphorus Compounds , Pesticides/analysis
2.
Nanomaterials (Basel) ; 11(12)2021 Dec 11.
Article in English | MEDLINE | ID: mdl-34947712

ABSTRACT

In this paper, the environmental stability of silicon nitride (SiNx) films deposited at 80 °C by plasma-enhanced chemical vapor deposition was studied systematically. X-ray photoelectron spectroscopy and Fourier transform infrared reflection were used to analyze the element content and atomic bond structure of the amorphous SiNx films. Variation of mechanical and optical properties were also evaluated. It is found that SiNx deposited at low temperature is easily oxidized, especially at elevated temperature and moisture. The hardness and elastic modulus did not change significantly with the increase of oxidation. The changes of the surface morphology, transmittance, and fracture extensibility are negligible. Finally, it is determined that SiNx films deposited at low-temperature with proper processing parameters are suitable for thin-film encapsulation of flexible devices.

3.
Nanomaterials (Basel) ; 11(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063882

ABSTRACT

The transparent conductive films (TCFs) based on silver nanowires are expected to be a next-generation electrode for flexible electronics. However, their defects such as easy oxidation and high junction resistance limit its wide application in practical situations. Herein, a method of coating Ti3C2Tx with different sizes was proposed to prepare silver nanowire/MXene composite films. The solution-processed silver nanowire (AgNW) networks were patched and welded by capillary force effect through the double-coatings of small and large MXene nanosheets. The sheet resistance of the optimized AgNW/MXene TCFs was 15.1 Ω/sq, the optical transmittance at 550 nm was 89.3%, and the figure of merit value was 214.4. Moreover, the AgNW/MXene TCF showed higher stability at 1600 mechanical bending, annealing at 100 °C for 50 h, and exposure to ambient air for 40 days. These results indicate that the novel AgNW/MXene TCFs have a great potential for high-performance flexible optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...