Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 17509, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37845274

ABSTRACT

Current source is an indispensable component of magnetorheological (MR) systems. Though MR fluid has a phase change as fast as in 1 ms, the response of MR damper (MRD) to generate the damping force may be two orders of magnitude longer. Therefore, the rapid response of current source is a key to realize the real-time semi-active control of MR devices. This study proposes a programmable high-speed, low-cost current source exclusively for MR devices based on the synergy between supercapacitor and Buck converter (i.e., SSBC current source). SSBC current source features a strategy consisting of a lifting phase of supercapacitor and a following maintaining phase of Buck converter. Specifically, the high power density of supercapacitor contributes to rapidly lifting/raising the initial current, and then, like a "relay race", the expected output is maintained through a Buck converter. Theoretical modeling and experiments are performed systematically. The response times (@ 95% of expected outputs) measured are 0.44, 0.84 and 1.88 ms for the outputs of 3, 6 and 9 A, respectively; these values are highlighted as the fastest level in this field. Besides, the response can be up to 24.6 and 43.7 times faster than the cases using supercapacitor and Buck converter to directly drive the MRD, respectively. SSBC current source is employed to generate a sequence of currents/magnetic inductions, only four variables of which need to be controlled programmatically: the order of lifting and maintaining phases, switching time of lifting phase, PWM duty cycle of Buck converter and duration of maintaining phase. The response time stability is verified by 100 cycles of on/off tests, showing a fluctuation of only 1.1%, which indicates a very reliable high-speed response. This study provides an exclusive power supply with a novel strategy for MR devices, which is believed to be an important promotion for MR technologies.

2.
ACS Appl Mater Interfaces ; 15(41): 48683-48694, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37812741

ABSTRACT

Flexible pressure sensors are increasingly sought after for applications ranging from physiological signal monitoring to robotic sensing; however, the challenges associated with fabricating highly sensitive, comfortable, and cost-effective sensors remain formidable. This study presents a high-performance, all-fabric capacitive pressure sensor (AFCPS) that incorporates piezoelectric nanofibers. Through the meticulous optimization of conductive fiber electrodes and P(VDF-TrFE) nanofiber dielectric layers, the AFCPS exhibits exceptional attributes such as high sensitivity (4.05 kPa-1), an ultralow detection limit (0.6 Pa), an extensive detection range (∼100 kPa), rapid response time (<26 ms), and robust stability (>14,000 cycles). The sensor's porous structure enhances its compressibility, while its piezoelectric properties expedite charge separation, thereby increasing the interface capacitance and augmenting overall performance. These features are elucidated further through multiphysical field-coupling simulations and experimental testing. Owing to its comprehensive superior performance, the AFCPS has demonstrated its efficacy in monitoring human activity and physiological signals, as well as in discerning soft robotic grasping movements. Additionally, we have successfully implemented multiple AFCPS units as pressure sensor arrays to ascertain spatial pressure distribution and enable intelligent robotic gripping. Our research underscores the promising potential of the AFCPS device in wearable electronics and robotic sensing, thereby contributing significantly to the advancement of high-performance fabric-based sensors.


Subject(s)
Nanofibers , Robotic Surgical Procedures , Robotics , Wearable Electronic Devices , Humans , Nanofibers/chemistry , Pressure
SELECTION OF CITATIONS
SEARCH DETAIL
...