Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e32435, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38961989

ABSTRACT

An efficient method was discovered for catalyzing the esterification under air using Novozym 435 to obtain pyridine esters. The following conditions were found to be optimal: 60 mg of Novozyme 435, 5.0 mL of n-hexane, a molar ratio of 2:1 for nicotinic acids (0.4 mmol) to alcohols (0.2 mmol), 0.25 g of molecular sieve 3A, a revolution speed of 150 rpm, a reaction temperature of 50 °C, and reaction time of 48 h. Under nine cycles of Novozym 435, the 80 % yield was consistently obtained. Optimum conditions were used to synthesize 23 pyridine esters, including five novel compounds. Among them, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) showed phenethyl nicotinate (3g), (E)-hex-4-en-1-yl nicotinate (3m), and octyl nicotinate (3n) possessed strong aromas. Thermogravimetric analysis (TG) revealed that the compounds 3g, 3m and 3n exhibited stability at the specified temperature. This finding provides theoretical support for adding pyridine esters fragrance to high-temperature processed food.

2.
Nanoscale ; 16(22): 10727-10736, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38721638

ABSTRACT

The photocatalytic water-mediated CO2 reduction reaction, which holds great promise for the conversion of CO2 into valuable chemicals, is often hindered by inefficient separation of photogenerated charges and a lack of suitable catalytic sites. Herein, we have developed a glycerol coordination assembly approach to precisely control the distribution of atomically dispersed Cu species by occupying Ti-defects and adjusting the ratio between Cu species and Ti-defects in a hierarchical TiO2. The optimal sample demonstrates a ∼4-fold improvement in CO2-to-CO conversion compared to normal TiO2 nanoparticles. The high activity could be attributed to the Ti defects, which enhance the photogenerated charge separation and simultaneously facilitate the adsorption of water molecules, thereby promoting the water oxidation reaction. Moreover, by means of in situ EPR and FTIR spectra, we have demonstrated that Cu species can effectively capture photogenerated electrons and facilitate the adsorption of CO2, so as to catalyze the reduction of CO2. This work provides a strategy for the construction of atomic-level synergistic catalytic sites and the utilization of in situ techniques to reveal the underlying mechanism.

SELECTION OF CITATIONS
SEARCH DETAIL
...