Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 17(1): 107, 2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36355312

ABSTRACT

A weakly temperature-dependent paramagnetic-like susceptibility peak at zero magnetic field is observed in [Formula: see text] with only marginal amount of ferromagnetic impurities. The ferromagnetic hysteresis loop and the magnetic moment splitting between zero-field-cooled and field-cooled processes indicate ferromagnetism in the samples. The paramagnetic-like susceptibility peak height is proportional to the remanent magnetic moment of hysteresis loops. High-resolution transmission electron microscope image supports that the observed ferromagnetic feature originates from lattice distortion. These results imply that the weakly temperature-dependent paramagnetic-like susceptibility peak originates from weak lattice distortion and/or superparamagnetism.

2.
Nanoscale Res Lett ; 17(1): 55, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35622164

ABSTRACT

Ferromagnetism to non-ferromagnetism transition is detected in a chemically bonded MoSe[Formula: see text]/WSe[Formula: see text] powder with different thermal annealing temperatures. All samples exhibit ferromagnetism and Raman redshift, except for the 1100 °C thermally annealed sample in which the MoSe[Formula: see text] and WSe[Formula: see text] are thermally dissociated and geometrically separated. The element analysis reveals no significant element ratio difference and detectable magnetic elements in all samples. These results support that, in contrast to the widely reported structure defect or transition element dopant, the observed ferromagnetism originates from the structure distortion due to the chemical bonding at the interface between MoSe[Formula: see text] and WSe[Formula: see text].

3.
Nanoscale Res Lett ; 17(1): 12, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35032238

ABSTRACT

The magnetization measurement was performed in the Bi0.3Sb1.7Te3 single crystal. The magnetic susceptibility revealed a paramagnetic peak independent of the experimental temperature variation. It is speculated to be originated from the free-aligned spin texture at the Dirac point. The ARPES reveals that the Fermi level lies below the Dirac point. The Fermi wavevector extracted from the de Haas-van Alphen oscillation is consistent with the energy dispersion in the ARPES. Our experimental results support that the observed paramagnetic peak in the susceptibility curve does not originate from the free-aligned spin texture at the Dirac point.

4.
Nanoscale Res Lett ; 16(1): 180, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34928440

ABSTRACT

The magnetic susceptibility reveals a discontinuity at Néel temperature and a hysteresis loop with low coercive field was observed below Néel temperature. The magnetic susceptibility of zero field cool and field cool processes coincide at a temperature above the discontinuity, and they split at temperature blow the discontinuity. The magnetic susceptibility splitting is larger at lower external magnetic fields. No more magnetic susceptibility splitting was observed at a magnetic field above 7000 Oe which is consistent with the magnetic anisotropy energy. Our study supports that these magnetic susceptibility characteristics originate from an antiferromagnetic order accompanied by weak ferromagnetism.

5.
Nanomaterials (Basel) ; 11(12)2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34947615

ABSTRACT

We studied the magnetic properties of WSe2/MoSe2 powder. The coercivity field reaches 2600 Oe at 5 K, 4233 Oe at 100 K and 1300 Oe at 300 K. These are the highest values reported for two-dimensional transition metal dichalcogenides. This study is different from the widely reported vacancy and zigzag structure-induced ferromagnetism studies. Importantly, a Raman peak red shift was observed, and that supports the chemical bonding at the interface between WSe2 and MoSe2. The large coercivity field originates from the chemical bonding-induced structural distortion at the interface between WSe2 and MoSe2.

SELECTION OF CITATIONS
SEARCH DETAIL
...