Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37589186

ABSTRACT

A Gram-negative, rod-shaped and aerobic bacterial strain B3.7T, was isolated from the sediment of Zhairuo Island, Zhoushan city, Zhejiang Province, PR China. Maximum growth of strain B3.7T was observed at 30 °C when cultured in a medium containing 0.5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences demonstrated that strain B3.7T belonged to the genus Shinella; it showed the highest sequence similarity of 98.47 % to Shinella kummerowiae CCBAU 25048T. The average nucleotide identity and digital DNA-DNA hybridization values between strain B3.7T and its reference strains were 82.9-84.2 % and 26.1-27.3 %, respectively. Chemotaxonomic analysis indicated that the sole respiratory quinone was Q-10 and the predominant cellular fatty acids were C19 : 0 cyclo ω8c, C16 : 0, C18 : 1 ω7c 11-methyl and summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The polar lipid profile was composed of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, three unidentified phospholipids and two unidentified aminolipids. Collectively, strain B3.7T can be considered to represent a novel species, for which the name Shinella sedimenti sp. nov. is proposed. The type strain is B3.7T (=MCCC 1K07163T=LMG 32559T).


Subject(s)
Fatty Acids , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , DNA, Bacterial/genetics , Bacterial Typing Techniques , Base Composition , China
2.
Microbiol Spectr ; 11(4): e0121623, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37395645

ABSTRACT

Furfural is a major inhibitor found in lignocellulosic hydrolysate, a promising feedstock for the biofermentation industry. In this study, we aimed to investigate the potential impact of this furan-derived chemical on yeast genome integrity and phenotypic evolution by using genetic screening systems and high-throughput analyses. Our results showed that the rates of aneuploidy, chromosomal rearrangements (including large deletions and duplications), and loss of heterozygosity (LOH) increased by 50-fold, 23-fold, and 4-fold, respectively, when yeast cells were cultured in medium containing a nonlethal dose of furfural (0.6 g/L). We observed significantly different ratios of genetic events between untreated and furfural-exposed cells, indicating that furfural exposure induced a unique pattern of genomic instability. Furfural exposure also increased the proportion of CG-to-TA and CG-to-AT base substitutions among point mutations, which was correlated with DNA oxidative damage. Interestingly, although monosomy of chromosomes often results in the slower growth of yeast under spontaneous conditions, we found that monosomic chromosome IX contributed to the enhanced furfural tolerance. Additionally, terminal LOH events on the right arm of chromosome IV, which led to homozygosity of the SSD1 allele, were associated with furfural resistance. This study sheds light on the mechanisms underlying the influence of furfural on yeast genome integrity and adaptability evolution. IMPORTANCE Industrial microorganisms are often exposed to multiple environmental stressors and inhibitors during their application. This study demonstrates that nonlethal concentrations of furfural in the culture medium can significantly induce genome instability in the yeast Saccharomyces cerevisiae. Notably, furfural-exposed yeast cells displayed frequent chromosome aberrations, indicating the potent teratogenicity of this inhibitor. We identified specific genomic alterations, including monosomic chromosome IX and loss of heterozygosity of the right arm of chromosome IV, that confer furfural tolerance to a diploid S. cerevisiae strain. These findings enhance our understanding of how microorganisms evolve and adapt to stressful environments and offer insights for developing strategies to improve their performance in industrial applications.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Humans , Saccharomyces cerevisiae/genetics , Furaldehyde/toxicity , Saccharomyces cerevisiae Proteins/genetics , Genomic Instability , Genomics
3.
Nat Prod Res ; 35(15): 2470-2475, 2021 Aug.
Article in English | MEDLINE | ID: mdl-31642712

ABSTRACT

Four new polyketides including two arthrinic acid derivatives (1-2), one phenolic derivative (3) and (S)-3-hydroxy-6-(2-hydroxypropyl)-5-methyl-2H-pyran-2-one (4) along with one methyl ester of arthrinic acid (5) were isolated from the culture broth of Arthrinium sp., which was an entophytic fungus of clam worm. Their structures were identified on the basis of HR-ESI-MS and NMR spectral analyses together with advanced Mosher's method. In the assay of inhibiting the prostate cancer PC3 cell line, none of the isolated compounds showed significant cytotoxicity.


Subject(s)
Polyketides , Xylariales , Humans , Magnetic Resonance Spectroscopy , Molecular Structure , Polyketides/pharmacology , Pyrans , Xylariales/chemistry
4.
Mar Drugs ; 18(12)2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33352941

ABSTRACT

Fungi are a prospective resource of bioactive compounds, but conventional methods of drug discovery are not effective enough to fully explore their metabolic potential. This study aimed to develop an easily attainable method to elicit the metabolic potential of fungi using Aspergillus nidulans laeA as a transcription regulation tool. In this study, functional analysis of Aspergillus nidulans laeA (AnLaeA) and Aspergillus sp. Z5 laeA (Az5LaeA) was done in the fungus Aspergillus sp. Z5. Heterologous AnLaeA-and native Az5LaeA-overexpression exhibited similar phenotypic effects and caused an increase in production of a bioactive compound diorcinol in Aspergillus sp. Z5, which proved the conserved function of this global regulator. In particular, heteroexpression of AnLaeA showed a significant impact on the expression of velvet complex genes, diorcinol synthesis-related genes, and different transcription factors (TFs). Moreover, heteroexpression of AnLaeA influenced the whole genome gene expression of Aspergillus sp. Z5 and triggered the upregulation of many genes. Overall, these findings suggest that heteroexpression of AnLaeA in fungi serves as a simple and easy method to explore their metabolic potential. In relation to this, AnLaeA was overexpressed in the fungus Penicillium sp. LC1-4, which resulted in increased production of quinolactacin A.


Subject(s)
Aspergillus nidulans/genetics , Aspergillus nidulans/metabolism , Gene Expression Regulation, Fungal/physiology , Secondary Metabolism/physiology , Up-Regulation/physiology , Animals , Computational Biology/methods , Conus Snail , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Gene Expression Profiling/methods
5.
AMB Express ; 10(1): 146, 2020 Aug 17.
Article in English | MEDLINE | ID: mdl-32804300

ABSTRACT

High temperature causes ubiquitous environmental stress to microorganisms, but studies have not fully explained whether and to what extent heat shock would affect genome stability. Hence, this study explored heat-shock-induced genomic alterations in the yeast Saccharomyces cerevisiae. Using genetic screening systems and customized single nucleotide polymorphism (SNP) microarrays, we found that heat shock (52 °C) for several minutes could heighten mitotic recombination by at least one order of magnitude. More than half of heat-shock-induced mitotic recombinations were likely to be initiated by DNA breaks in the S/G2 phase of the cell cycle. Chromosomal aberration, mainly trisomy, was elevated hundreds of times in heat-shock-treated cells than in untreated cells. Distinct chromosomal instability patterns were also observed between heat-treated and carbendazim-treated yeast cells. Finally, we demonstrated that heat shock stimulates fast phenotypic evolutions (such as tolerance to ethanol, vanillin, fluconazole, and tunicamycin) in the yeast population. This study not only provided novel insights into the effect of temperature fluctuations on genomic integrity but also developed a simple protocol to generate an aneuploidy mutant of yeast.

6.
Curr Microbiol ; 77(10): 2925-2932, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32661679

ABSTRACT

A novel bacterium designated SSM4.2T was isolated from seaweed of Gouqi Island, which is the center of the Zhoushan fishing ground in the East China Sea. Strain SSM4.2T was Gram-stain-negative, bright yellow-pigmented, short rod-shaped, non-flagellated, non-spore forming, aerobic and motile by gliding. Growth was observed at 4-37 °C (optimum 25-30 °C), pH 6.0-8.0 (optimum pH 7.0) and 0-2.0% (w/v) NaCl (optimum 0%) concentration. The strain was catalase- and oxidase-positive. Menaquinone-6 (MK-6) was found as the sole respiratory quinone and zeaxanthin as the main carotenoid pigment. The predominant fatty acids (≥ 10%) were iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH and summed feature 3 (C16:1 ω7c /C16:1 ω6c). The major polar lipid was phosphatidylethanolamine (PE). The genome size was 5.7 Mbp. The DNA G + C content was 34.1 mol%. 16S rRNA gene sequence revealed that strain SSM4.2T belongs to the genus Flavobacterium and shares high-sequence similarity with F. limi KACC 18851T (98.1%), F. hydrophilum KACC 19591T (97.6%), F. defluvii KCTC 12612T (97.1%), F. cheongpyeongense KACC 19592T (97.0%) and F. fluviatile KCTC 52446T (96.9%). Strain SSM4.2T had 73.2-84.6% average nucleotide identity and 19.1-29.4% digital DNA-DNA hybridization values with its closest type strains. Based on its phenotypic, chemotaxonomic, phylogenetic and genomic features, strain SSM4.2T represents a novel species of the genus Flavobacterium, for which the name Flavobacterium ajazii sp. nov. is proposed. The type strain is SSM4.2T (= KCTC 72807T = MCCC 1K04370T).


Subject(s)
Flavobacterium , Phylogeny , Seaweed , China , Fatty Acids/analysis , Flavobacterium/classification , Flavobacterium/genetics , Flavobacterium/isolation & purification , Islands , RNA, Ribosomal, 16S/genetics , Seaweed/microbiology , Species Specificity , Vitamin K 2/analysis
7.
Int J Syst Evol Microbiol ; 70(7): 4250-4260, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32568031

ABSTRACT

Two yellow-pigmented, Gram-stain-negative, aerobic, rod-shaped bacteria were isolated from the water of the hypersaline Chaka Salt Lake (strain SaA2.12T) and sediment of Qinghai Lake (strain LaA7.5T), PR China. According to the 16S rRNA phylogeny, the isolates belong to the genus Flavobacterium, showing the highest 16S rRNA sequence similarities to Flavobacterium arcticum SM1502T(97.6-97.7 %) and Flavobacterium suzhouense XIN-1T(96.5-96.6 %). Moreover, strains SaA2.12T and LaA7.5T showed 99.73 % 16S rRNA sequence similarity to each other. Major fatty acids, respiratory quinones and polar lipids detected in these isolates were iso-C15 : 0, menaquinone-6 and phosphatidylethanolamine, respectively. Strains SaA2.12T and LaA7.5T showed significant unique characteristics between them as well as between the closest phylogenetic members. The highest digital DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values between SaA2.12T and its closest neighbours were 25.3 and 82.8 %, respectively; whereas these values (highest) between LaA7.5T and its closest members were 25.2 and 82.8 %, respectively. The dDDH and ANI values between strains SaA2.12T and LaA7.5T were calculated as 75.9 and 97.2 %, respectively. Therefore, based on polyphasic data, we propose that strain SaA2.12T represents a novel species with the name Flavobacterium salilacus sp. nov., with the type strain SaA2.12T (=KCTC 72220T=MCCC 1K03618T) and strain LaA7.5T as a subspecies within novel Flavobacterium salilacus with the name Flavobacterium salilacus subsp. altitudinum subsp. nov., with the type strain LaA7.5T (=KCTC 72806T=MCCC 1K04372T). These propositions automatically create Flavobacterium salilacus subsp. salilacus subsp. nov. with SaA2.12T (=KCTC 72220T=MCCC 1K03618T) as the type strain.


Subject(s)
Flavobacterium/classification , Lakes/microbiology , Phylogeny , Saline Waters , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacterium/isolation & purification , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
8.
J Microbiol ; 57(12): 1065-1072, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31562606

ABSTRACT

A yellow pigmented, Gram-stain-negative, aerobic bacterium designated A5.7T was studied to evaluate the taxonomic position following the modern polyphasic approach. The strain was isolated from sediments near Zhairuo Island, which is situated in the East China Sea. Cells were non-spore forming rods without flagella but showed motility by gliding. Growth was observed at 15-35°C (optimum 28°C), pH 6.0-9.0 (optimum pH 6.5) and 0-2% (w/v) NaCl (optimum 0-0.5%) in LB broth. The major respiratory quinone of A5.7T was menaquinone 6. The major polar lipid of A5.7T was phosphatidylethanolamine and the predominant fatty acids (> 5%) were iso-C15:0, iso-C17:0 3-OH, C15:1ω6c, iso-C15:0 3-OH, iso-C15:1 G, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 9 (iso-C17:1ω9c and/or C16:010-methyl). Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolate belongs to the genus Flavobacterium and shares the highest sequence similarities with Flavobacterium sharifuzzamanii A7.6T (98.5%), Flavobacterium tistrianum GB 56.1T (98.3%), Flavobacterium nitrogenifigens NXU-44T (97.8%), Flavobacterium anhuiense D3T (97.6%), Flavobacterium ginsenosidimutans THG 01T (97.6%), and Flavobacterium foetidum CJ42T (97.6%). Digital DNA-DNA hybridization and average nucleotide identity values between the strain and its closest phylogenetic neighbors showed the ranges from 19.6 to 34.1% and 73.7 to 87.9%, respectively. Therefore, based on polyphasic characteristics, strain A5.7T represents a novel species of the genus Flavobacterium for which the name Flavobacterium zhairuonensis sp. nov. is proposed. The type strain is A5.7T (= KCTC 62406T = MCCC 1K03494T).


Subject(s)
Flavobacterium/classification , Flavobacterium/isolation & purification , Geologic Sediments/microbiology , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/analysis , Flavobacterium/genetics , Flavobacterium/physiology , Genome, Bacterial/genetics , Hydrogen-Ion Concentration , Nucleic Acid Hybridization , Phosphatidylethanolamines/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride , Temperature , Vitamin K 2/analogs & derivatives , Vitamin K 2/analysis
9.
Appl Environ Microbiol ; 85(18)2019 09 15.
Article in English | MEDLINE | ID: mdl-31300396

ABSTRACT

Furfural is an important renewable precursor for multiple commercial chemicals and fuels; a main inhibitor existing in cellulosic hydrolysate, which is used for bioethanol fermentation; and a potential carcinogen, as well. Using a genetic system in Saccharomyces cerevisiae that allows detection of crossover events, we observed that the frequency of mitotic recombination was elevated by 1.5- to 40-fold when cells were treated with 0.1 g/liter to 20 g/liter furfural. Analysis of the gene conversion tracts associated with crossover events suggested that most furfural-induced recombination resulted from repair of DNA double-strand breaks (DSBs) that occurred in the G1 phase. Furfural was incapable of breaking DNA directly in vitro but could trigger DSBs in vivo related to reactive oxygen species accumulation. By whole-genome single nucleotide polymorphism (SNP) microarray and sequencing, furfural-induced genomic alterations that range from single base substitutions, loss of heterozygosity, and chromosomal rearrangements to aneuploidy were explored. At the whole-genome level, furfural-induced events were evenly distributed across 16 chromosomes but were enriched in high-GC-content regions. Point mutations, particularly the C-to-T/G-to-A transitions, were significantly elevated in furfural-treated cells compared to wild-type cells. This study provided multiple novel insights into the global effects of furfural on genomic stability.IMPORTANCE Whether and how furfural affects genome integrity have not been clarified. Using a Saccharomyces cerevisiae model, we found that furfural exposure leads to in vivo DSBs and elevation in mitotic recombination by orders of magnitude. Gross chromosomal rearrangements and aneuploidy events also occurred at a higher frequency in furfural-treated cells. In a genome-wide analysis, we show that the patterns of mitotic recombination and point mutations differed dramatically in furfural-treated cells and wild-type cells.


Subject(s)
Carcinogens , Cell Division/drug effects , Furaldehyde/adverse effects , Genome, Fungal/drug effects , Genomic Instability/drug effects , Saccharomyces cerevisiae/drug effects , Chromosomes, Fungal/drug effects , Chromosomes, Fungal/genetics , DNA Breaks, Double-Stranded/drug effects , Genome, Fungal/genetics , Saccharomyces cerevisiae/genetics
10.
Appl Microbiol Biotechnol ; 103(12): 4869-4880, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31053912

ABSTRACT

The yeast Saccharomyces cerevisiae has been widely used as a model system for studying the physiological and pharmacological action of small-molecular drugs. Here, a heterozygous diploid S. cerevisiae strain QSS4 was generated to determine whether drugs could induce chromosomal instability by determining the frequency of mitotic recombination. Using the combination of a custom SNP microarray and yeast screening system, the patterns of chromosomal instability induced by drugs were explored at the whole genome level in QSS4. We found that Zeocin (a member of the bleomycin family) treatment increased the rate of genomic alterations, including aneuploidy, loss of heterozygosity (LOH), and chromosomal rearrangement over a hundred-fold. Most recombination events are likely to be initiated by DNA double-stand breaks directly generated by Zeocin. Another remarkable finding is that G4-motifs and low GC regions were significantly underrepresented within the gene conversion tracts of Zeocin-induced LOH events, indicating that certain DNA regions are less preferred Zeocin-binding sites in vivo. This study provides a novel paradigm for evaluating genetic toxicity of small-molecular drugs using yeast models.


Subject(s)
Chromosomal Instability/drug effects , Chromosomes, Fungal , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Small Molecule Libraries/pharmacology , Aneuploidy , Bleomycin/pharmacology , Cell Division , Gene Rearrangement , Genomic Instability , Loss of Heterozygosity , Recombination, Genetic
11.
Curr Microbiol ; 76(3): 297-303, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30603961

ABSTRACT

A novel bacterial strain A7.6T was isolated from the sediments collected near the Zhairuo Island located in the East China Sea and characterized using a polyphasic approach. Cells were Gram-stain-negative, rod-shaped, non-spore forming, non-flagellated but motile by gliding. The strain was aerobic, positive for oxidase and catalase activities. The strain can grow at 4-35 °C, pH 5.5-9.0, and 0-3% (w/v) NaCl concentration. The major polar lipid was phosphatidylethanolamine, the predominant fatty acids (> 10%) were iso-C15:0 and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c). The genomic G+C content was 33.6 mol% and the major respiratory quinone was menaquinone 6. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain A7.6T belonged to the genus Flavobacterium and was closely related to Flavobacterium tistrianum GB 56.1T (98.4% similarity), F. nitrogenifigens NXU-44T (98.4%), F. ginsenosidimutans THG 01T (98.0%) and F. anhuiense D3T (97.7%). Average nucleotide identities and digital DNA-DNA hybridizations values for genomes ranged from 75.9 to 91.4% and 21.4 to 43.9% between strain A7.6T and its closest phylogenetic neighbors. The polyphasic characterization indicated that strain A7.6T represented a novel species of the genus Flavobacterium, for which the name Flavobacterium sharifuzzamanii is proposed. The type strain is A7.6T (= KCTC 62405T = MCCC 1K03485T). The NCBI GenBank accession number for the 16S rRNA gene of A7.6T is MH396692, and for the genome sequence is QJGZ00000000. The digital protologue database (DPD) Taxon Number is TA00643.


Subject(s)
Flavobacterium/classification , Flavobacterium/physiology , Geologic Sediments/microbiology , Oceans and Seas , Phylogeny , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/analysis , Flavobacterium/chemistry , Genome, Bacterial/genetics , Hydrogen-Ion Concentration , Phospholipids/analysis , Quinones/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sodium Chloride , Temperature
12.
Article in English | MEDLINE | ID: mdl-29564145

ABSTRACT

BACKGROUND: Sequencing of fungal species has demonstrated the existence of thousands of putative secondary metabolite gene clusters, the majority of them harboring a unique set of genes thought to participate in production of distinct small molecules. Despite the ready identification of key enzymes and potential cluster genes by bioinformatics techniques in sequenced genomes, the expression and identification of fungal secondary metabolites in the native host is often hampered as the genes might not be expressed under laboratory conditions and the species might not be amenable to genetic manipulation. To overcome these restrictions, we developed an inducible expression system in the genetic model Aspergillus nidulans. RESULTS: We genetically engineered a strain of A. nidulans devoid of producing eight of the most abundant endogenous secondary metabolites to express the sterigmatocystin Zn(II)2Cys6 transcription factor-encoding gene aflR and its cofactor aflS under control of the nitrate inducible niiA/niaD promoter. Furthermore, we identified a subset of promoters from the sterigmatocystin gene cluster that are under nitrate-inducible AflR/S control in our production strain in order to yield coordinated expression without the risks from reusing a single inducible promoter. As proof of concept, we used this system to produce ß-carotene from the carotenoid gene cluster of Fusarium fujikuroi. CONCLUSION: Utilizing one-step yeast recombinational cloning, we developed an inducible expression system in the genetic model A. nidulans and show that it can be successfully used to produce commercially valuable metabolites.

13.
Appl Microbiol Biotechnol ; 102(5): 2213-2223, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29333587

ABSTRACT

Yeast Saccharomyces cerevisiae strains isolated from different sources generally show extensive genetic and phenotypic diversity. Understanding how genomic variations influence phenotypes is important for developing strategies with improved economic traits. The diploid S. cerevisiae strain NY1308 is used for cellulosic bioethanol production. Whole genome sequencing identified an extensive amount of single nucleotide variations and small insertions/deletions in the genome of NY1308 compared with the S288c genome. Gene annotation of the assembled NY1308 genome showed that 43 unique genes are absent in the S288c genome. Phylogenetic analysis suggested most of the unique genes were obtained through horizontal gene transfer from other species. RNA-Seq revealed that some unique genes were not functional in NY1308 due to unidentified intron sequences. During bioethanol fermentation, NY1308 tends to flocculate when certain inhibitors (derived from the pretreatment of cellulosic feedstock) are present in the fermentation medium. qRT-PCR and genetic manipulation confirmed that the novel gene, NYn43, contributed to the flocculation ability of NY1308. Deletion of NYn43 resulted in a faster fermentation rate for NY1308. This work disclosed the genetic characterization of a bioethanol-producing S. cerevisiae strain and provided a useful paradigm showing how the genetic diversity of the yeast population would facilitate the personalized development of desirable traits.


Subject(s)
Ethanol/metabolism , Saccharomyces cerevisiae/genetics , Diploidy , Fermentation , Genome, Fungal , Molecular Sequence Annotation , Phenotype , Phylogeny , Saccharomyces cerevisiae/classification , Saccharomyces cerevisiae/isolation & purification , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
14.
Evol Bioinform Online ; 12(Suppl 1): 1-4, 2016.
Article in English | MEDLINE | ID: mdl-27081303

ABSTRACT

Aspergillus sp. Z5, isolated from the gut of marine isopods, produces prolific secondary metabolites with new structure and bioactivity. Here, we report the draft sequence of the approximately 33.8-Mbp genome of this strain. To the best of our knowledge, this is the first genome sequence of Aspergillus strain isolated from marine isopod Ligia oceanica. The phylogenetic analysis supported that this strain was closely related to A. versicolor, and genomic analysis revealed that Aspergillus sp. Z5 shared a high degree of colinearity with the genome of A. sydowii. Our results may facilitate studies on discovering the biosynthetic pathways of secondary metabolites and elucidating their evolution in this species.

15.
Fungal Genet Biol ; 89: 102-113, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26701311

ABSTRACT

Small peptides formed from non-ribosomal peptide synthetases (NRPS) are bioactive molecules produced by many fungi including the genus Aspergillus. A subset of NRPS utilizes tryptophan and its precursor, the non-proteinogenic amino acid anthranilate, in synthesis of various metabolites such as Aspergillus fumigatus fumiquinazolines (Fqs) produced by the fmq gene cluster. The A. fumigatus genome contains two putative anthranilate synthases - a key enzyme in conversion of anthranilic acid to tryptophan - one beside the fmq cluster and one in a region of co-linearity with other Aspergillus spp. Only the gene found in the co-linear region, trpE, was involved in tryptophan biosynthesis. We found that site-specific mutations of the TrpE feedback domain resulted in significantly increased production of anthranilate, tryptophan, p-aminobenzoate and fumiquinazolines FqF and FqC. Supplementation with tryptophan restored metabolism to near wild type levels in the feedback mutants and suggested that synthesis of the tryptophan degradation product kynurenine could negatively impact Fq synthesis. The second putative anthranilate synthase gene next to the fmq cluster was termed icsA for its considerable identity to isochorismate synthases in bacteria. Although icsA had no impact on A. fumigatus Fq production, deletion and over-expression of icsA increased and decreased respectively aromatic amino acid levels suggesting that IcsA can draw from the cellular chorismate pool.


Subject(s)
Anthranilate Synthase/genetics , Aspergillus fumigatus/genetics , Aspergillus fumigatus/metabolism , Feedback, Physiological , Fungal Proteins/genetics , Secondary Metabolism/genetics , Tryptophan/metabolism , Amino Acid Sequence , Amino Acids , Anthranilate Synthase/metabolism , Escherichia coli/genetics , Fungal Proteins/metabolism , Multigene Family , Mutation , Peptide Synthases/genetics , Quinazolines/metabolism , ortho-Aminobenzoates/metabolism
16.
Appl Microbiol Biotechnol ; 99(7): 3127-39, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25573472

ABSTRACT

Xylose is described as a component of bacterial exopolysaccharides in only a limited number of bacterial strains. A bacterial strain, Paenibacillus elgii, B69 was shown to be efficient in producing a xylose-containing exopolysaccharide. Sequence analysis was performed to identify the genes encoding the uridine diphosphate (UDP)-glucuronic acid decarboxylase required for the synthesis of UDP-xylose, the precursor of the exopolysaccharide. Two sequences, designated as Peuxs1 and Peuxs2, were found as the candidate genes for such enzymes. The activities of the UDP-glucuronic acid decarboxylases were proven by heterologous expression and real-time nuclear magnetic resonance analysis. The intracellular activity and effect of these genes on the synthesis of exopolysaccharide were further investigated by developing a thymidylate synthase based knockout system. This system was used to substitute the conventional antibiotic resistance gene system in P. elgii, a natural multi-antibiotic resistant strain. Results of intracellular nucleotide sugar analysis showed that the intracellular UDP-xylose and UDP-glucuronic acid levels were affected in Peuxs1 or Peuxs2 knockout strains. The knockout of either Peuxs1 or Peuxs2 reduced the polysaccharide production and changed the monosaccharide ratio. No polysaccharide was found in the Peuxs1/Peuxs2 double knockout strain. Our results show that P. elgii can be efficient in forming UDP-xylose, which is then used for the synthesis of xylose-containing exopolysaccharide.


Subject(s)
Carboxy-Lyases/metabolism , Paenibacillus/metabolism , Polysaccharides/biosynthesis , Amino Acid Sequence , Chromatography, High Pressure Liquid , Cloning, Molecular , Drug Resistance, Bacterial/genetics , Gene Knockout Techniques , Kinetics , Magnetic Resonance Spectroscopy , Molecular Sequence Data , Mutation , Polysaccharides/chemistry , Polysaccharides/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Uridine Diphosphate Xylose/metabolism , Xylose/chemistry , Xylose/metabolism
17.
Carbohydr Polym ; 110: 203-8, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-24906747

ABSTRACT

A universal method to enhance productivity and viscosity of bacterial exopolysaccharides was developed. The technique was based on the principle that ampicillin can inhibit the biosynthesis of peptidoglycan, which shares a common synthetic pathway with that of bacterial exopolysaccharides. Serial passages of three typical representatives of bacterial EPS-producing strains, namely Sphingomonas elodea, Xanthomonas campestris, and Paenibacillus elgii, were subjected to ampicillin, which was used as a stressor and a mutagen. These mutant strains are advantageous over other strains because of two major factors. First, all of the resulting strains were almost mutants with increase in EPS productivity and viscosity. Second, isolated serial strains showed different levels of increase in EPS production and viscosity to satisfy the different requirements of practical applications. No differences were observed in the monosaccharide composition produced by the mutant and parent strains; however, high-viscosity mutant strains exhibited higher molecular weights. The results confirmed that the developed method is a controlled universal one that can improve exopolysaccharides productivity and viscosity.


Subject(s)
Ampicillin/metabolism , Mutagens/metabolism , Paenibacillus/metabolism , Polysaccharides, Bacterial/metabolism , Sphingomonas/metabolism , Xanthomonas campestris/metabolism , Anti-Bacterial Agents/metabolism , Carbohydrate Sequence , Industrial Microbiology , Molecular Sequence Data , Paenibacillus/chemistry , Paenibacillus/drug effects , Paenibacillus/genetics , Polysaccharides, Bacterial/chemistry , Sphingomonas/chemistry , Sphingomonas/drug effects , Sphingomonas/genetics , Viscosity , Xanthomonas campestris/chemistry , Xanthomonas campestris/drug effects , Xanthomonas campestris/genetics
18.
Bioresour Technol ; 152: 371-6, 2014.
Article in English | MEDLINE | ID: mdl-24316480

ABSTRACT

The protective effect and the mechanisms of trehalose accumulation in industrial Saccharomyces cerevisiae strains were investigated during ethanol fermentation. The engineered strains with more intercellular trehalose achieved significantly higher fermentation rates and ethanol yields than their wild strain ZS during very high gravity (VHG) fermentation, while their performances were not different during regular fermentation. The VHG fermentation performances of these strains were consistent with their growth capacity under osmotic stress and ethanol stress, the key stress factors during VHG fermentation. These results suggest that trehalose accumulation is more important for VHG fermentation of industrial yeast strains than regular one. The differences in membrane integrity and antioxidative capacity of these strains indicated the possible mechanisms of trehalose as a protectant under VHG condition. Therefore, trehalose metabolic engineering may be a useful strategy for improving the VHG fermentation performance of industrial yeast strains.


Subject(s)
Ethanol/metabolism , Fermentation , Industrial Microbiology , Saccharomyces cerevisiae/metabolism , Trehalose/metabolism , Antioxidants/metabolism , Catalase/metabolism , Cell Membrane/metabolism , Gene Deletion , Intracellular Space/metabolism , Metabolic Engineering , Microbial Viability , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae Proteins/metabolism , Stress, Physiological , Superoxide Dismutase/metabolism
19.
Appl Microbiol Biotechnol ; 98(7): 3059-70, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24346281

ABSTRACT

Whole-genome shuffling (WGS) is a powerful technology of improving the complex traits of many microorganisms. However, the molecular mechanisms underlying the altered phenotypes in isolates were less clarified. Isolates with significantly enhanced stress tolerance and ethanol titer under very-high-gravity conditions were obtained after WGS of the bioethanol Saccharomyces cerevisiae strain ZTW1. Karyotype analysis and RT-qPCR showed that chromosomal rearrangement occurred frequently in genome shuffling. Thus, the phenotypic effects of genomic structural variations were determined in this study. RNA-Seq and physiological analyses revealed the diverse transcription pattern and physiological status of the isolate S3-110 and ZTW1. Our observations suggest that the improved stress tolerance of S3-110 can be largely attributed to the copy number variations in large DNA regions, which would adjust the ploidy of yeast cells and expression levels of certain genes involved in stress response. Overall, this work not only constructed shuffled S. cerevisiae strains that have potential industrial applications but also provided novel insights into the molecular mechanisms of WGS and enhanced our knowledge on this useful breeding strategy.


Subject(s)
DNA Shuffling , Genomic Structural Variation , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Karyotyping , Real-Time Polymerase Chain Reaction
20.
Bioresour Technol ; 134: 87-93, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23500564

ABSTRACT

The optimization, purification and characterization of bioflocculant produced by Paenibacillus elgii B69 were investigated. The bioflocculant was an exopolysaccharide composed of glucose, glucuronic acid, mannose and xylose. The maximum bioflocculant production was about 25.63 g/L achieved with sucrose at 51.35 g/L, peptone at 6.78 g/L and yeast extract at 0.47 g/L optimized by response-surface methodology. In addition, a series of experiments was performed to investigate the flocculation activities towards kaolin clay, dyeing pigment, heavy metal ion, and real wastewater and the result indicated the new bioflocculant had high activities towards all the tested pollutions. These results showed its great potential for water pretreatment used in industry.


Subject(s)
Paenibacillus/metabolism , Polysaccharides/chemistry , Wastewater/microbiology , Water Purification/methods , Adsorption , Biodegradation, Environmental/drug effects , Carbon/pharmacology , Color , Extracellular Space/drug effects , Extracellular Space/metabolism , Flocculation , Ions , Metals, Heavy/isolation & purification , Nitrogen/pharmacology , Paenibacillus/drug effects , Reproducibility of Results , Water Pollutants, Chemical/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...