Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World J Surg ; 47(4): 1003-1017, 2023 04.
Article in English | MEDLINE | ID: mdl-36633646

ABSTRACT

INTRODUCTION: The potential association between severe postoperative complications (SPC) and the oncological outcomes of esophageal squamous cell carcinoma (ESCC) patients according to the different Naples Prognostic Score (NPS) of the inflammatory nutritional status after minimally invasive esophagectomy (MIE) is unclear. METHODS: Kaplan-Meier survival analysis was used to evaluate overall survival (OS) and disease-free survival (DFS) between with or without SPC (Clavien-Dindo grade ≥ III) in low NPS status (NPS = 0 or 1) and high NPS status (NPS = 2 or 3 or 4) patients. Cox multivariable analysis was carried out to analyze the various independent factors of OS and DFS, and a nomogram based on SPC was established. RESULTS: A total of 20.7% (125/604) ESCC patients developed SPC after MIE. Patients with SPC exhibited poor 5-year OS and DFS compared to those without SPC (all P < 0.001). Further analysis revealed that SPC significantly reduced OS and DFS in patients with high NPS status (all P < 0.001) but had little effect on the prognosis of patients with low NPS status (all P > 0.05). Multivariable Cox analysis revealed that SPC could be an independent influence indicator for OS and DFS in patients with high NPS status. Therefore, a novel nomogram combining SPC and tumor-node-metastasis (TNM) staging has been developed, which was found to be relatively more accurate in predicting OS and DFS than TNM staging alone. CONCLUSION: Severe complications can adversely affect the long-term oncological outcome of ESCC patients with high systemic inflammatory response and malnutrition after MIE.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Humans , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Neoplasms/pathology , Nutritional Status , Esophagectomy/adverse effects , Prognosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Retrospective Studies
2.
Mol Ecol Resour ; 20(4): 882-891, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32216061

ABSTRACT

Ancherythroculter nigrocauda is a cyprinid fish endemic of the upper reaches of the Yangtze River in China, where it is an important aquaculture and commercial species. It is also a threatened species as a result of overfishing, dam construction and water pollution. In this study, a chromosome-level genome assembly of A. nigrocauda is reported and built using PacBio sequencing and the Hi-C technology. The 1.04-Gb sequenced genome of A. nigrocauda contained 2,403 contigs, with an N50 length of 3.12 Mb. Then, 1,297 contigs, which represented 54.0% of all contigs and 97.2% of the whole content of the genome nucleotide base, were assembled into 24 chromosomes. Combined with transcriptome data from 10 tissues, 27,042 (78.5%) genes were functionally annotated out of 34,414 predicted protein-coding genes. Interestingly, high expression of many positively selected genes and expanded gene families in the brain suggested that these genes might play important roles in brain development in A. nigrocauda. Finally, we found tissue-specific expression of 10,732 genes. Functional analyses showed that they were mainly composed of genes related to (a) environmental information processing, (b) the circulatory system, and (c) development, suggesting they might be important for adaptation to different environments and for development of A. nigrocauda. The high-quality genome obtained in this study not only provides a valuable genomic resource for future studies of A. nigrocauda populations and conservation, but is also an important resource for further functional genomics studies of fishes.


Subject(s)
Cyprinidae/genetics , Genome/genetics , Transcriptome/genetics , Animals , Brain/growth & development , China , Chromosomes/genetics , Conservation of Natural Resources/methods , Genomics/methods , Molecular Sequence Annotation/methods , Phylogeny , Sequence Analysis, DNA/methods
3.
Genome Biol Evol ; 11(9): 2505-2516, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31384954

ABSTRACT

Although DNA transposons often generated internal deleted derivatives such as miniature inverted-repeat transposable elements, short internally deleted elements (SIDEs) derived from nonlong terminal-repeat retrotransposons are rare. Here, we found a novel SIDE, named Persaeus, that originated from the chicken repeat 1 (CR1) retrotransposon Zenon and it has been found widespread in Lepidoptera insects. Our findings suggested that Persaeus and the partner Zenon have experienced a transposition burst in their host genomes and the copy number of Persaeus and Zenon in assayed genomes are significantly correlated. Accordingly, the activity though age analysis indicated that the replication wave of Persaeus coincided with that of Zenon. Phylogenetic analyses suggested that Persaeus may have evolved at least four times independently, and that it has been vertically transferred into its host genomes. Together, our results provide new insights into the evolution dynamics of SIDEs and its partner non-LTRs.


Subject(s)
Lepidoptera/genetics , Retroelements , Animals , Lepidoptera/classification , Phylogeny
4.
Genes Genomics ; 40(5): 485-495, 2018 05.
Article in English | MEDLINE | ID: mdl-29892960

ABSTRACT

TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated "cut and paste" mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.


Subject(s)
Bombyx/genetics , DNA-Binding Proteins/genetics , Transposases/genetics , Animals , DNA Transposable Elements/genetics , Genome, Insect/genetics , Genome-Wide Association Study/methods , Phylogeny
5.
Mob DNA ; 9: 19, 2018.
Article in English | MEDLINE | ID: mdl-29946369

ABSTRACT

BACKGROUND: Transposable elements (TEs) are common and often present with high copy numbers in cellular genomes. Unlike in cellular organisms, TEs were previously thought to be either rare or absent in viruses. Almost all reported TEs display only one or two copies per viral genome. In addition, the discovery of pandoraviruses with genomes up to 2.5-Mb emphasizes the need for biologists to rethink the fundamental nature of the relationship between viruses and cellular life. RESULTS: Herein, we performed the first comprehensive analysis of miniature inverted-repeat transposable elements (MITEs) in the 5170 viral genomes for which sequences are currently available. Four hundred and fifty one copies of ten miniature inverted-repeat transposable elements (MITEs) were found and each MITE had reached relatively large copy numbers (some up to 90) in viruses. Eight MITEs belonging to two DNA superfamilies (hobo/Activator/Tam3 and Chapaev-Mirage-CACTA) were for the first time identified in viruses, further expanding the organismal range of these two superfamilies. TEs may play important roles in shaping the evolution of pandoravirus genomes, which were here found to be very rich in MITEs. We also show that putative autonomous partners of seven MITEs are present in the genomes of viral hosts, suggesting that viruses may borrow the transpositional machinery of their cellular hosts' autonomous elements to spread MITEs and colonize their own genomes. The presence of seven similar MITEs in viral hosts, suggesting horizontal transfers (HTs) as the major mechanism for MITEs propagation. CONCLUSIONS: Our discovery highlights that TEs contribute to shape genome evolution of pandoraviruses. We concluded that as for cellular organisms, TEs are part of the pandoraviruses' diverse mobilome.

SELECTION OF CITATIONS
SEARCH DETAIL
...